""" 模型配置文件 """ # 文本预处理参数 MAX_SEQUENCE_LENGTH = 500 # 文本序列最大长度 MAX_NUM_WORDS = 50000 # 词汇表最大大小 MAX_CHAR_LENGTH = 2000 # 字符级最大长度 MIN_WORD_FREQUENCY = 5 # 最小词频 # 模型架构参数 CNN_CONFIG = { "embedding_dim": 200, "num_filters": 256, "filter_sizes": [3, 4, 5], "dropout_rate": 0.5, "l2_reg_lambda": 0.0, } RNN_CONFIG = { "embedding_dim": 200, "hidden_size": 256, "num_layers": 2, "bidirectional": True, "dropout_rate": 0.5, } TRANSFORMER_CONFIG = { "embedding_dim": 200, "num_heads": 8, "ff_dim": 512, "num_layers": 4, "dropout_rate": 0.1, } # 针对RTX 4090的优化设置 BATCH_SIZE = 128 # RTX 4090有24GB显存,可以支持较大的batch EVAL_BATCH_SIZE = 256 # 评估时可以用更大的batch # 训练参数 LEARNING_RATE = 1e-3 NUM_EPOCHS = 20 EARLY_STOPPING_PATIENCE = 3 REDUCE_LR_PATIENCE = 2 REDUCE_LR_FACTOR = 0.5 VALIDATION_SPLIT = 0.1 TEST_SPLIT = 0.1 # 词嵌入参数 USE_PRETRAINED_EMBEDDING = True EMBEDDING_TYPE = "word2vec" # 可选: word2vec, glove, fasttext # 随机种子,保证实验可重复性 RANDOM_SEED = 42 # 模型保存参数 SAVE_BEST_ONLY = True MODEL_CHECKPOINT_PATH = "best_model.h5" # 特征工程参数 USE_CHAR_LEVEL = False # 是否使用字符级特征 USE_WORD_LEVEL = True # 是否使用词级特征 USE_TFIDF = False # 是否使用TF-IDF特征 USE_POS_TAGS = False # 是否使用词性标注特征 # 数据增强参数 USE_DATA_AUGMENTATION = False AUGMENTATION_FACTOR = 0.2 # 增强20%的数据 # 推理参数 PREDICTION_THRESHOLD = 0.5 TOP_K_PREDICTIONS = 3