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Abstract

Text to speech (TTS) has made rapid progress in both academia and industry in
recent years. Some questions naturally arise that whether a TTS system can achieve
human-level quality, how to define/judge that quality and how to achieve it. In this
paper, we answer these questions by first defining the human-level quality based
on the statistical significance of subjective measure and introducing appropriate
guidelines to judge it, and then developing a TTS system called NaturalSpeech that
achieves human-level quality on a benchmark dataset. Specifically, we leverage a
variational autoencoder (VAE) for end-to-end text to waveform generation, with
several key modules to enhance the capacity of the prior from text and reduce
the complexity of the posterior from speech, including phoneme pre-training,
differentiable duration modeling, bidirectional prior/posterior modeling, and a
memory mechanism in VAE. Experiment evaluations on popular LJSpeech dataset
show that our proposed NaturalSpeech achieves −0.01 CMOS (comparative mean
opinion score) to human recordings at the sentence level, with Wilcoxon signed
rank test at p-level p � 0.05, which demonstrates no statistically significant
difference from human recordings for the first time on this dataset.

1 Introduction

Text to speech (TTS) aims at synthesizing intelligible and natural speech from text [1], and has made
rapid progress in recent years due to the development of deep learning. Neural network based TTS has
evolved from CNN/RNN-based models [2, 3, 4, 5, 6, 7, 8] to Transformer-based models [9, 10, 11],
from basic generative models (autoregressive) [2, 3, 9] to more powerful models (VAE, GAN, flow,
diffusion) [12, 13, 14, 15], from cascaded acoustic models/vocoders [2, 4, 3, 10, 16, 17] to fully
end-to-end models [18, 19, 15].

Building TTS systems with human-level quality has always been the dream of the practitioners in
speech synthesis. While current TTS systems achieve high voice quality, they still have quality gap
compared with human recordings. To pursue this goal, several questions need to be answered: 1) how
to define human-level quality in text to speech synthesis? 2) how to judge whether a TTS system has
achieved human-level quality or not? 3) how to build a TTS system to achieve human-level quality?
In this paper, we conduct a comprehensive study on these problems in TTS. We first give a formal
definition on human-level quality in TTS based on a statistical and measurable way (see Definition 1).
Then we introduce some guidelines to judge whether a TTS system has achieved human-level quality
with a hypothesis test. Using this judge method, we found several previous TTS systems have not
achieved it (see Table 1).
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In this paper, we further develop a fully end-to-end text to waveform generation system called
NaturalSpeech to bridge the quality gap to recordings and achieve human-level quality. Specifically,
inspired by image/video/waveform generation [20, 21, 15], we leverage variational autoencoder
(VAE) [22] to compress the high-dimensional speech (x) into continuous frame-level representations
(denoted as posterior q(z|x)), which are used to reconstruct the waveform (denoted as p(x|z)). The
corresponding prior (denoted as p(z|y)) is obtained from the text sequence y. Considering the
posterior from speech is more complicated than the prior from text, we design several modules (see
Figure 1) to match the posterior and prior as close to each other as possible, to enable text to speech
synthesis through p(z|y)→ p(x|z):

• We leverage large-scale pre-training on the phoneme encoder to extract better representations from
phoneme sequence (Section 3.2).

• We leverage a fully differentiable durator2 that consists of a duration predictor and an upsampling
layer to improve the duration modeling (Section 3.3).

• We design a bidirectional prior/posterior module based on flow models [23, 24, 25] to further
enhance the prior p(z|y) and reduce the complexity of posterior q(z|x) (Section 3.4).

• We propose a memory based VAE to reduce the complexity of the posterior needed to reconstruct
waveform (Section 3.5).

Compared to previous TTS systems, NaturalSpeech has several advantages: 1) Reduce training-
inference mismatch. In previous cascaded acoustic model/vocoder pipeline [13, 18, 14] and explicit
duration prediction [13, 15, 18], both mel-spectrogram and duration suffer from training-inference
mismatch since ground-truth values are used in training the vocoder and mel-spectrogram decoder
while predicted values are used in inference. Our fully end-to-end text to waveform generation
and differentiable durator can avoid the training-inference mismatch. 2) Alleviate one-to-many
mapping problem. One text sequence can correspond to multiple speech utterances with different
variation information (e.g., pitch, duration, speed, pause, prosody, etc). Previous works only using
variance adaptor [18, 11] to predict pitch/duration cannot well handle the one-to-many mapping
problem. Our memory based VAE and bidirectional prior/posterior can reduce the complexity of
posterior and enhance the prior, which helps relieve the one-to-many mapping problem. 3) Improve
representation capacity. Previous models are not powerful enough to extract good representations
from phoneme sequence [13, 15, 14] and learn complicated data distribution in speech [18]. Our
large-scale phoneme pre-training and powerful generative models such as flow and VAE can learn
better text representations and speech data distributions.

We conduct experimental evaluations on the widely adopted LJSpeech dataset [26] to measure
the voice quality of our NaturalSpeech system. Based on the proposed judgement guidelines,
NaturalSpeech achieves similar quality with human recordings in terms of MOS (mean opinion score)
and CMOS (comparative MOS). Specifically, the speech generated by NaturalSpeech achieves −0.01
CMOS compared to recordings, with p-level p � 0.05 under Wilcoxon signed rank test, which
demonstrates that NaturalSpeech can generate speech with no statistically significant difference from
recordings.

2 Definition and Judgement of Human-Level Quality in TTS

In this section, we introduce the formal definition of human-level quality in text to speech synthesis,
and describe how to judge whether a TTS system achieves human-level quality or not.

2.1 Definition of Human-Level Quality

We define human-level quality in a statistical and measurable way.
Definition 1. If there is no statistically significant difference between the quality scores of the speech
generated by a TTS system and the quality scores of the corresponding human recordings on a test
set, then this TTS system achieves human-level quality on this test set.

2Since duration is very important in TTS, especially in non-autoregressive TTS, we name the module related
to duration modeling as durator, including but not limited to the functionalities of duration prediction and hidden
expansion. It is common to come up with new term to revolutionize the concept in speech community, such as
vocoder, cepstrum.
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Note that by claiming a TTS system achieves human-level quality on a test set, we do not mean
that a TTS system can surpass or replace human, but the quality of this TTS system is statistically
indistinguishable from human recordings on this test set.

2.2 Judgement of Human-Level Quality

Judgement Guideline While there are some objective metrics to measure the quality gap between
the generated speech and human recordings, such as PESQ [27], STOI [28], SI-SDR [29], they are
not reliable to measure the perception quality in TTS. Therefore, we use subjective evaluation to
measure the voice quality. Previous works usually use mean opinion score (MOS) with 5 points (from
1 to 5) to compare the generated speech with recordings. However, MOS is not sensitive enough to
the difference in voice quality since the judge simply rates the quality of each sentence alone from the
two systems with no paired comparison. Thus, we choose comparative mean opinion score (CMOS)
with 7 points (from −3 to 3) as the evaluation metric, where each judge measures the voice quality
by comparing samples from two systems head by head. We further conduct Wilcoxon signed rank
test [30] to measure whether the two systems are significantly different or not in terms of CMOS
evaluation.

Therefore, we list the judgement guidelines of human-level quality as follows: 1) Each utterance from
TTS system and human recordings should be listened and compared side-by-side by more than 20
judges, who should be native language speakers. At least 50 test utterances from each system should
be used in the judgement. 2) The speech generated by TTS system has no statistically significant
difference from human recordings, if and only if the average CMOS is close to 0 and the p-level of
Wilcoxon signed rank test satisfies p > 0.05.

Judgement of Previous TTS Systems Based on these guidelines, we test whether current TTS
systems can achieve human-level quality or not on the LJSpeech dataset. The systems we study
include: 1) FastSpeech 2 [18] + HiFiGAN [17], 2) Glow-TTS [13] + HiFiGAN [17], 3) Grad-
TTS [14] + HiFiGAN [17], 4) VITS [15]. We re-produce the results of all these systems by our own,
which can match or even beat the quality in their original papers (note that the HiFiGAN vocoder is
fine-tuned on the predicted mel-spectrograms for better synthesis quality). We use 50 test utterances,
each with 20 judges for MOS and CMOS evaluation. As shown in Table 1, although the current TTS
systems can achieve close MOS with recordings, they have a large CMOS gap to recordings, with
Wilcoxon signed rank test at p-level p� 0.05, which shows statistically significant difference from
human recordings. We further study where the quality gap comes from by analyzing each component
in one of the above TTS systems in Appendix A.

Table 1: The MOS and CMOS comparisons between previous TTS systems and human recordings.
Note that the Wilcoxon p-value in MOS is conducted using Wilcoxon rank sum test [30], instead
of the Wilcoxon signed rank test in CMOS, due to no paired comparison in MOS evaluation. For
Grad-TTS, we use 1000 steps for inference.

System MOS Wilcoxon p-value CMOS Wilcoxon p-value

Human Recordings 4.52± 0.11 - 0 -

FastSpeech 2 [18] + HiFiGAN [17] 4.32± 0.10 1.0e-05 −0.30 5.1e-20
Glow-TTS [13] + HiFiGAN [17] 4.33± 0.10 1.3e-06 −0.23 8.7e-17
Grad-TTS [14] + HiFiGAN [17] 4.37± 0.10 0.0127 −0.23 1.2e-11
VITS [15] 4.49± 0.10 0.2429 −0.19 2.9e-04

3 Description of NaturalSpeech System

To bridge the quality gap to human recordings, we develop NaturalSpeech, a fully end-to-end text
to waveform generation model. We first describe the design principle of our system (Section 3.1),
and then introduce each module of this system (Section 3.2-3.5) and training/inference pipeline
(Section 3.6), and finally explain why our system can bridge the quality gap to human recordings
(Section 3.7).
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Phoneme Encoder  
(with phoneme pre-training)

Phoneme 𝒚

Wave Decoder
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Waveform 𝒙

𝒙

𝒒(𝒛|𝒙)𝒑(𝒛′|𝒚)

Training & inference

Only in training

Figure 1: System overview of NaturalSpeech.

3.1 Design Principle

Inspired by image/video generation [21, 31, 32, 33, 34] that uses VQ-VAE [20, 35, 36] to compress
high-dimensional image into low-dimensional representations to ease the generation, we leverage
VAE [22] to compress high-dimensional speech x into frame-level representations z (i.e., z is sampled
from posterior distribution q(z|x)), which are used to reconstruct the waveform (denoted as p(x|z)).
In general formulation of VAE, the prior p(z) is chosen to be standard isotropic multivariate Gaussian.
To enable conditional waveform generation from input text in TTS, we predict z from phoneme
sequence y, i.e., z is sampled from predicted prior distribution p(z|y). We jointly optimize the VAE
and the prior prediction with gradients propogating to both q(z|x) and p(z|y). Derived from the
evidence lower bound [22], the loss function consists of a waveform reconstruction loss − log p(x|z)
and a Kullback-Leibler divergence loss between the posterior q(z|x) and the prior p(z|y), i.e.,
KL[q(z|x)||p(z|y)].

Considering the posterior from speech is more complicated than the prior from text, to match them
as close as possible to enable text to waveform generation, we design several modules to simplify
the posterior and to enhance the prior, as shown in Figure 1. First, to learn a good representations
of phoneme sequence for better prior prediction, we pre-train a phoneme encoder on a large-scale
text corpus using masked language modeling on phoneme sequence (Section 3.2). Second, since the
posterior is at the frame level while the phoneme prior is at the phoneme level, we need to expand the
phoneme prior according to its duration to bridge the length difference. We leverage a differentiable
durator to improve duration modeling (Section 3.3). Third, we design a bidirectional prior/posterior
module to enhance the prior or simplify the posterior (Section 3.4). Fourth, we propose a memory
based VAE that leverages a memory bank through Q-K-V attention [37] to reduce the complexity of
posterior needed to reconstruct the waveform (Section 3.5).

3.2 Phoneme Encoder

The phoneme encoder θpho takes a phoneme sequence y as input and outputs a phoneme hidden
sequence. To enhance the representation capability of the phoneme encoder, we conduct large-scale
phoneme pre-training. Previous works [38] conduct pre-training in character/word level and apply the
pre-trained model to phoneme encoder, which will cause inconsistency, and the works [39] directly
using phoneme pre-training will suffer from limited capacity due to too small size of phoneme
vocabulary. To avoid these issues, we leverage mixed-phoneme pre-training [40], which uses both
phoneme and sup-phoneme (adjacent phonemes merged together) as the input of the model, as shown
in Figure 2c. When using masked language modeling [41], we randomly mask some sup-phoneme
tokens and their corresponding phoneme tokens and predict the masked phoneme and sup-phoneme
at the same time. After mixed phoneme pre-training, we use the pre-trained model to initialize the
phoneme encoder of our TTS system.

3.3 Differentiable Durator

The differentiable durator θdur takes a phoneme hidden sequence as input, and outputs a sequence
of prior distribution at the frame level, as shown in Figure 2a. We denote the prior distribution as
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(b) Bidirectional prior/posterior.

Phoneme Encoder
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(c) Phoneme pre-training.

To Waveform Decoder

Key: Memory Bank 𝑴
Query: 𝒛 ~ 𝒒 𝒛 𝒙

Value: Memory Bank 𝑴
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X
Attention Weights: 𝑾

…

…
𝑤3 𝑤5

(d) Memory mechanism in VAE.

Figure 2: The designed modules in NaturalSpeech.

p(z′|y; θpho, θdur) = p(z′|y; θpri), where θpri = [θpho, θdur]. The differentiable durator θdur consists of
several modules: 1) a duration predictor that builds upon the phoneme encoder to predict the duration
for each phoneme, 2) a learnable upsampling layer that leverages the predicted duration to learn
a projection matrix to extend the phoneme hidden sequence from phoneme level to frame level in
a differentiable way [42], and 3) two additional linear layers on the expanded hidden sequence to
calculate the mean and variance of the prior distribution p(z′|y; θpri). The detailed formulation of
differentiable durator is in Appendix B. We optimize the duration prediction, learnable upsampling
layer, and mean/variance linear layers together with the TTS model in a fully differentiable way,
which can reduce the training-inference mismatch in previous duration prediction (ground-truth
duration is used in training while predicted duration is used in inference) [13, 15, 18] and better use
duration in a soft and flexible way instead of a hard expansion, hence the side-effect of inaccurate
duration prediction is mitigated.

3.4 Bidirectional Prior/Posterior

As shown in Figure 2b, we design a bidirectional prior/posterior module to enhance the capacity of
the prior p(z′|y; θpri) or to reduce the complexity of the posterior q(z|x;φ) where φ is the posterior
encoder, since there is information gap between the posterior obtained from speech sequence and the
prior obtained from phoneme sequence. We choose a flow model [23, 43, 24, 25] as the bidirectional
prior/posterior module (denoted as θbpp) since it is easy to optimize and has a nice property of
invertibility.

Reduce Posterior q(z|x;φ) with Backward Mapping f−1 The bidirectional prior/posterior mod-
ule can reduce the complexity of posterior from q(z|x;φ) to q(z′|x;φ, θbpp) through the backward
mapping f−1(z; θbpp), i.e., for z ∼ q(z|x;φ), z′ = f−1(z; θbpp) ∼ q(z′|x;φ, θbpp). The objective is
to match the simplified posterior q(z′|x;φ, θbpp) to the prior p(z′|y; θpri) by using the KL divergence
loss as follows:

Lbwd(φ, θbpp, θpri) = KL[q(z′|x;φ, θbpp)||p(z′|y; θpri))] =

∫
q(z′|x;φ, θbpp) · log

q(z′|x;φ, θbpp)

p(z′|y; θpri)
dz′

=

∫
q(z|x;φ)|det

∂f−1(z; θbpp)

∂z
|−1 · log

q(z|x;φ)|det
∂f−1(z;θbpp)

∂z |−1

p(f−1(z; θbpp)|y; θpri)
· | det

∂f−1(z; θbpp)

∂z
|dz

=

∫
q(z|x;φ) · log

q(z|x;φ)

p(f−1(z; θbpp)|y; θpri)|det
∂f−1(z;θbpp)

∂z |
dz

= Ez∼q(z|x;φ)(log q(z|x;φ)− log(p(f−1(z; θbpp)|y; θpri)|det
∂f−1(z; θbpp)

∂z
|),

(1)
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where the third equality (the second line) in Equation 1 is obtained via the change of
variables: dz′ = |det

∂f−1(z;θbpp)
∂z |dz, and q(z′|x;φ, θbpp) = q(z|x;φ)|det

∂f(z′;θbpp)
∂z′ | =

q(z|x;φ)|det
∂f−1(z;θbpp)

∂z |−1 according to inverse function theorem.

Enhance Prior p(z′|y; θpri) with Forward Mapping f The bidirectional prior/posterior module
can enhance the capacity of prior from p(z′|y; θpri) to p(z|y; θpri, θbpp) through the forward mapping
f(z′; θbpp), i.e., for z′ ∼ p(z′|y; θpri), z = f(z′; θbpp) ∼ p(z|y; θpri, θbpp). The objective is to match
the enhanced prior p(z|y; θpri, θbpp) to the posterior q(z|x;φ) using the KL divergence loss as follows:

Lfwd(φ, θbpp, θpri) = KL[p(z|y; θpri, θbpp)||q(z|x;φ)] =

∫
p(z|y; θpri, θbpp) · log

p(z|y; θpri, θbpp)

q(z|x;φ)
dz

=

∫
p(z′|y; θpri)|det

∂f(z′; θbpp)

∂z′
|−1 · log

p(z′|y; θpri)|det
∂f(z′;θbpp)

∂z′ |−1

q(f(z′; θbpp)|x;φ)
· | det

∂f(z′; θbpp)

∂z′
|dz′

= Ez′∼p(z′|y;θpri)(log p(z′|y; θpri)− log q(f(z′; θbpp)|x;φ)|det
∂f(z′; θbpp)

∂z′
|),

(2)
where the third equality (the second line) in Equation 2 is obtained via the change of vari-
ables: dz = |det

∂f(z′;θbpp)
∂z′ |dz′, and p(z|y; θpri, θbpp) = p(z′|y; θpri)|det

∂f−1(z;θbpp)
∂z | =

p(z′|y; θpri)|det
∂f(z′;θbpp)

∂z′ |−1 according to inverse function theorem, similar to that in Equation 1.

By using backward and forward loss functions, both directions of the flow model are considered in
training, which can reduce the training-inference mismatch in the previous flow models that train
in backward direction but infer in forward direction. We also provide another formulation of the
bidirectional prior/posterior in Appendix C.

3.5 VAE with Memory

The posterior q(z|x;φ) in the original VAE model is used to reconstruct the speech waveform, and
thus is more complicated than the prior from the phoneme sequence. To further relieve the burden of
prior prediction, we simplify the posterior by designing a memory based VAE model. The high-level
idea of this design is that instead of directly using z ∼ q(z|x;φ) for waveform reconstruction, we just
use z as a query to attend to a memory bank, and use the attention result for waveform reconstruction,
as shown in Figure 2d. In this way, the posterior z is only used to determine the attention weights in
the memory bank, and thus is largely simplified. The waveform reconstruction loss based on memory
VAE can be formulated as

Lrec(φ, θdec) = −Ez∼q(z|x;φ)[log p(x|Attention(z,M,M); θdec)],

Attention(Q,K, V ) = [softmax(
QWQ(KWK)T√

h
)VWV ]WO,

(3)

where θdec denotes the waveform decoder, which covers not only the original waveform decoder but
also the model parameters related to the memory mechanism, including the memory bank M and the
attention parameters WQ, WK , WV , and WO, where M ∈ RL×h and W∗ ∈ Rh×h, L is the size of
the memory bank and h is the hidden dimension.

3.6 Training and Inference Pipeline

Besides the waveform reconstruction loss and bidirectional prior/posterior loss, we additionally
conduct a fully end-to-end optimization to take the whole inference procedure in training for better
voice quality. The loss function is formulated as follows.

Le2e(θpri, θbpp, θdec) = −Ez′∼p(z′|y;θpri)[log p(x|Attention(f(z′; θbpp),M,M); θdec)]. (4)

Based on Equation 1, 2, 3, and 4, the total loss function is

L = Lbwd(φ, θpri, θbpp) + Lfwd(φ, θpri, θbpp) + Lrec(φ, θdec) + Le2e(θpri, θbpp, θdec), (5)

where θpri = [θpho, θdur].
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ℒe2e
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𝜽pho
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𝝓
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Figure 3: Gradient flows.

Note that there are some special explanations of the above loss func-
tions: 1) Since the frame-level prior distribution p(z′|y; θpri) cannot
well align with the ground-truth speech frames due to the intrinsically
inaccurate duration prediction in durator, we leverage a soft dynamic
time warping (DTW) version of KL loss for Lbwd and Lfwd. See Ap-
pendix D for the detailed formulation of the soft-DTW loss. 2) We
write the waveform loss in Lrec and Le2e as negative log-likelihood
loss for simplicity. Actually following [17], Lrec consists of GAN loss,
feature mapping loss and mel-spectrogram loss, while Le2e consists of
only GAN loss. We do not use soft-DTW in Le2e since we found GAN
loss can still perform well with mismatched lengths. See Appendix E
for the details of the waveform loss.

There are several different gradient flows in training the model, as
shown in Figure 3: 1) Lrec → θdec → φ; 2) Lbwd → θdur → θpho;
3) Lbwd → θbpp → φ; 4) Lfwd → θbpp → θdur → θpho; 5) Lfwd → φ; 6) Le2e → θdec → θbpp →
θdur → θpho. After training, we discard the posterior encoder φ and only use θpho, θbpp, θdur and θdec
for inference. The training and inference pipeline is summarized in Algorithm 1.

Algorithm 1 Training and inference of NaturalSpeech

1: Training:
2: Pre-train the phoneme encoder θpho.
3: Train the whole model [φ, θpho, θdur, θbpp, θdec] using loss L defined in Equation 5.
4: Inference:
5: Sample prior z′ ∼ p(z′|y; θpho, θdur).
6: Get enhanced prior z = f(z′; θbpp).
7: Generate waveform sample x ∼ p(x|Attention(z,M,M); θdec).

3.7 Advantages of NaturalSpeech

We explain how the designs in our NaturalSpeech system can close the quality gap to recordings.

• Reduce training-inference mismatch. We directly generate waveform from text and leverage a
differentiable durator to ensure a fully end-to-end optimization, which can reduce the training-
inference mismatch in the cascaded acoustic model/vocoder [13, 18, 14, 42] and explicit duration
prediction [15, 13, 18]. Note that although VAE and flow can have training-inference mismatch
inherently (waveform is reconstructed from the posterior in training while predicted from the prior
in inference for VAE, and flow is trained in backward direction and infered in forward direction),
we design the backward/forward loss in Equation 1 and 2 and the end-to-end loss in Equation 4 to
alleviate this problem.

• Alleviate one-to-many mapping problem. Compared to previous methods using reference en-
coder [44, 45, 46, 11] or pitch/energy extraction [18] for variation information modeling, our
posterior encoder φ in VAE acts like a reference encoder that can extract all the necessary variance
information in posterior distribution q(z|x;φ). We do not predict pitch explicitly since it can be
learned implicitly in the posterior encoder and the memory bank of VAE. To ensure the prior and
posterior can match with each other, on the one hand, we simplify the posterior with memory
VAE and backward mapping in the bidirectional prior/posterior module, and on the other hand, we
enhance the prior with phoneme pre-training, differentiable durator, and forward mapping in the
bidirectional prior/posterior module. Thus, we can alleviate the one-to-mapping problem to a large
extent.

• Increase representation capacity. We leverage large-scale phoneme pre-training to extract better
representation from the phoneme sequence, and leverage the advanced generative models (flow,
VAE, GAN) to capture the speech data distributions better, which can enhance the representation
capacity of the TTS models for better voice quality.

We further list the difference between our NaturalSpeech and previous TTS systems as follows:
1) Compared to previous autoregressive TTS models such as Tacotron 1/2 [4, 3], WaveNet [2],
TransformerTTS [9], and Wave-Tacotron [47], our NaturalSpeech is non-autoregressive in nature
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with a fast inference speed. 2) Compared to the previous systems with cascaded acoustic model
and vocoder, such as Tacotron 1/2 [4, 3], FastSpeech 1/2 [10, 18], ParallelTacotron 2 [42], Glow-
TTS [13], and Grad-TTS [14], we are fully end-to-end with no cascaded errors. 3) Compared to
previous systems with various reference encoders and pitch/duration prediction, such as FastSpeech
2 [18], AdaSpeech [45], and DelightfulTTS [11], we unify all the variance information with a
posterior encoder and model the duration in a fully differentiable way. 4) Compared to previous
fully end-to-end TTS systems such as EATS [19], FastSpeech 2s [18], and VITS [15], we bridge the
quality gap to recordings with advanced model designs to closely match the prior and posterior in the
VAE framework.

4 Experiments and Results

4.1 Experimental Settings

Datasets We evaluate our proposed NaturalSpeech on the LJSpeech dataset [26], which is widely
used for benchmarking TTS. LJSpeech is a single speaker English corpus and consists of 13, 100
audios and text transcripts, with a total length of nearly 24 hours at a sampling rate of 22.05kHz. We
randomly split the dataset into training set with 12, 500 samples, validation set with 100 samples, and
test set with 500 samples. For phoneme pre-training on phoneme encoder, we collect a large-scale
text corpus with 200 million sentences from the news-crawl dataset [48]. Note that we do not use any
extra paired text and speech data except for LJSpeech dataset. We conduct several preprocessings on
the speech and text sequences: 1) We convert the text/character sequence into phoneme sequence [49]
using a grapheme-to-phoneme tool [50]. 2) We use linear-spectrograms as the input of the posterior
encoder [15], instead of original waveform sequence for simplicity. The linear-spectrograms are
obtained by short-time Fourier transform (STFT) with FFT size, window size, and hop size of 1024,
1024, and 256, respectively. 3) For the mel-spectrogram loss on the waveform decoder, we obtain
the mel-spectrograms by applying 80-dimension mel-filterbanks on the linear-spectrograms of the
speech waveform.

Model Configurations Our phoneme encoder is a stack of 6 Feed-Forward Transformer (FFT)
blocks [10], where each block consists of a multi-head attention layer and a 1D convolution feed-
forward layer, with hidden size of 192. In the differentiable durator, the duration predictor con-
sists of 3-layer convolution. We use 4 consecutive affine coupling layers [51] in our bidirectional
prior/posterior module following [15]. We discard the scaling operation in the affine transform to
stabilize the bidirectional training. The shifting in the affine transform is estimated by a 4-layer
WaveNet [2] with a dilation rate of 1. The posterior encoder is based on a 16-layer WaveNet with a
kernel size of 5 and a dilation rate of 1. The waveform decoder consists of 4 residual convolution
blocks following [17], where each block has 3 layers of 1D convolution. We perform transpose
convolution for upsampling at every convolution block at a rate of [8, 8, 2, 2]. The hyperparameters
of NaturalSpeech are listed in Appendix G.

Training Details We train our proposed system on 8 NVIDIA V100 GPUs with 32G memory,
with a dynamic batch size of 8, 000 speech frames (under hop size of 256) per GPU, and a total 15k
training epochs. We use AdamW optimizer [52] with β1 = 0.8, β2 = 0.99. The initial learning rate
is 2 × 10−4, with a learning rate decay factor γ = 0.999875 in each epoch, i.e., the learning rate
is multiplied by γ in every epoch. We find it is helpful to stabilize the training of our system and
achieve better results through a warmup stage with 1k epochs at the beginning of the training, and a
tuning stage with 2k epochs at the end of the training. More details about these training stages can be
found in Appendix F.

4.2 Comparison with Human Recordings

We first compare the speech generated by NaturalSpeech with human recordings in terms of both
MOS and CMOS evaluation. As described in Section 2, we use 50 test utterances, each with 20 judges
for evaluation. As shown in Table 2 and 3, our system achieves similar quality scores with human
recordings in both MOS and CMOS. Importantly, our system achieves −0.01 CMOS compared to
recordings, with a Wilcoxon p-value [30] p� 0.05, which demonstrates the speech generated by our

8



system has no statistically significant difference from human recordings3 4. Thus, our NaturalSpeech
achieves human-level quality according to the definition and judgement in Section 2.

Table 2: MOS comparison between NaturalSpeech and human recordings. Wilcoxon rank sum test is
used to measure the p-value in MOS evaluation.

Human Recordings NaturalSpeech Wilcoxon p-value

4.58± 0.13 4.56± 0.13 0.7145

Table 3: CMOS comparison between NaturalSpeech and human recordings. Wilcoxon signed rank
test is used to measure the p-value in CMOS evaluation.

Human Recordings NaturalSpeech Wilcoxon p-value

0 −0.01 0.6902

4.3 Comparison with Previous TTS Systems

We compare our NaturalSpeech with previous TTS systems, including: 1) FastSpeech 2 [18] +
HiFiGAN [17], 2) Glow-TTS [13] + HiFiGAN [17], 3) Grad-TTS [14] + HiFiGAN [17], and 4)
VITS [15]. We re-produce the results of all these systems by our own, which can match or even beat
the quality in their original papers (note that the HiFiGAN vocoder is fine-tuned on the predicted
mel-spectrograms for better synthesis quality). Both the MOS and CMOS results are shown in
Table 4. It can be seen that our NaturalSpeech achieves better voice quality than these systems in
terms of both MOS and CMOS.

Table 4: MOS and CMOS comparisons between NaturalSpeech and previous TTS systems.
System MOS CMOS

FastSpeech 2 [18] + HiFiGAN [17] 4.32± 0.15 −0.33
Glow-TTS [13] + HiFiGAN [17] 4.34± 0.13 −0.26
Grad-TTS [14] + HiFiGAN [17] 4.37± 0.13 −0.24
VITS [15] 4.43± 0.13 −0.20

NaturalSpeech 4.56± 0.13 0

4.4 Ablation Studies and Method Analyses

Ablation Studies We further conduct ablation studies to verify the effectiveness of each module
in our system, as shown in Table 5. We describe the ablation studies as follows: 1) By removing
phoneme pre-training, we do not initialize the phoneme encoder from pre-trained weights but just
random initialization, which brings −0.09 CMOS drop, demonstrating the effectiveness of phoneme
pre-training. 2) By removing differentiable durator, we do not use learnable upsampling layer and
end-to-end duration optimization, but just use duration predictor for hard expansion. In this way,
we use monotonic alignment search [13] to provide the duration label to train the duration predictor
through the whole training process. Removing differentiable durator causes −0.12 CMOS drop,
demonstrates the importance of end-to-end optimization in duration modeling. 3) By removing
bidirectional prior/posterior module, we only use Lbwd in training and do not use Lfwd. It brings
−0.09 CMOS drop, showing the gain by leveraging bidirectional training to bridge the gap between
posterior and prior. 4) By removing memory mechanism in VAE, we use original VAE for waveform

3Audio samples can be found in https://speechresearch.github.io/naturalspeech/
4Note that some human recordings in LJSpeech dataset may contain strange rhythm ups and downs that

affect the rating score. To ensure the human recordings used for evaluation are of good quality, we let judges to
exclude the recordings with strange rhythms from evaluation. Otherwise, our NaturalSpeech will achieve better
CMOS than human recordings. In a CMOS test without excluding bad recordings, NaturalSpeech achieves
+0.09 CMOS better than recordings.

9

https://speechresearch.github.io/naturalspeech/


reconstruction, which causes −0.06 CMOS drop, showing the effectiveness of memory in VAE to
simplify the posterior.

Table 5: Ablation studies on each design in NaturalSpeech .
Setting CMOS

NaturalSpeech 0
− Phoneme Pre-training −0.09
− Differentiable Durator −0.12
− Bidirectional Prior/Posterior −0.09
−Memory in VAE −0.06

Inference Latency We compare the inference speed of our NaturalSpeech with previous TTS
systems. We measure the latency by using an NVIDIA V100 GPU with a batch size of 1 sentence
and averaging the latency over the sentences in the test set. The results are shown in Table 6. The
model components θpho, θdur, θbpp, and θdec in NaturalSpeech are used in inference, with 28.7M
model parameters. Our NaturalSpeech achieves faster or comparable inference speed when compared
with the previous systems, and achieves better voice quality.

Table 6: Inference speed comparison. RTF (real-time factor) means the time (in seconds) to synthesize
a 1-second waveform. Grad-TTS (1000) and Grad-TTS (10) mean using 1000 and 10 steps in
inference respectively.

System RTF

FastSpeech 2 [18] + HiFiGAN [17] 0.011
Glow-TTS [13] + HiFiGAN [17] 0.021
Grad-TTS [14] (1000) + HiFiGAN [17] 4.120
Grad-TTS [14] (10) + HiFiGAN [17] 0.082
VITS [15] 0.014

NaturalSpeech 0.013

5 Conclusions and Discussions

In this paper, we conduct a systematic study on the problems related to human-level quality in
TTS. We first give a formal definition of human-level quality and describe the guidelines to judge it,
and further build a TTS system called NaturalSpeech to achieve human-level quality. Specifically,
after analyzing the quality gap on several competitive TTS systems, we develop a fully end-to-end
text to waveform generation system, with several designs to close the gap to human recordings,
including phoneme pre-training, differentiable durator, bidirectional prior/posterior module, and
memory mechanism in VAE. Evaluations on the popular LJSpeech dataset demonstrate that our
NaturalSpeech achieves human-level quality with CMOS evaluations, with no statistically significant
difference from human recordings for the first time on this dataset.

Note that by claiming our NaturalSpeech system achieves human-level quality on LJSpeech dataset,
we do not mean that we can surpass or replace human, but the quality of NaturalSpeech is statistically
indistinguishable from human recordings on this dataset. Meanwhile, although our evaluations are
conducted on LJSpeech dataset, we believe the technologies in NaturalSpeech can be applied to other
languages, speakers, and styles to improve the general synthesis quality. We will further try to achieve
human-level quality in more challenging datasets or scenarios, such as expressive voices, longform
audiobook voices, and singing voices that have more dynamic, diverse, and contextual prosody in our
future work.
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A Study of the Quality Gap of Previous TTS System

To understand where and how the quality gap to recordings comes from, we conduct a systematic
study on the current TTS systems, which can help us to find the problems, and is equally important
(if not more) than solving the problems. Specifically, we choose a state-of-the-art TTS system using
FastSpeech 2 [18] as the acoustic model and HiFiGAN [17] as the vocoder, which consists of four
components: phoneme encoder, variance adaptor, mel-spectrogram decoder, and vocoder. We design
a series of comparison experiments to measure the quality gap (in terms of CMOS) of each component
to its corresponding upper bound. We conduct analyses from this order (from the closest to waveform
to the farest): vocoder, mel-spectrogram decoder, variance adaptor, and phoneme encoder.

Table 7: The CMOS of each component to its upper bound. Negative CMOS means this component
setting is worse than its upper bound.

Component Setting Upper Bound CMOS

Vocoder GT Mel→Vocoder Human Recordings −0.04
Mel Decoder GT Pitch/Duration→Mel Decoder GT Mel −0.15
Variance Adaptor Predicted Pitch/Duration GT Pitch/Duration −0.14
Phoneme Encoder Phoneme Encoder Phoneme Encoder + Pre-training −0.12

• Vocoder. We study the quality drop on the vocoder by comparing the two settings: 1) waveform
generated by vocoder with ground-truth mel-spectrograms as input; 2) ground-truth waveform
(human recordings). The CMOS is shown in Table 7. It can be seen that when taking ground-truth
mel-spectrograms as input, the waveform generated by vocoder has some but not huge gap to human
recordings. However, we need to pay attention to the training-inference mismatch in vocoder:
in training, vocoder takes ground-truth mel-spectrograms as input, while in inference, it takes
predicted mel-spectrograms as input.

• Mel-spectrogram Decoder. We study the quality drop on the mel-spectrogram decoder by comparing
the two settings: 1) mel-spectrograms generated by mel-spectrogram decoder with ground-truth
pitch and duration as input5; 2) ground-truth mel-spectrograms (extracted from human recordings).
We use the vocoder to convert the mel-sepctrograms in the two settings into waveform for evaluation.
As shown in Table 7, the predicted mel-spectrograms have 0.15 CMOS drop compared to the
ground-truth mel-spectrograms.

• Variance Adaptor. We study the quality drop on the variance adaptor by comparing the predicted
pitch/duration with the ground-truth pitch/duration. We need the mel-spectrogram decoder and
vocoder to generate the waveform for evaluation in the two settings. As shown in Table 7, the
predicted pitch/duration have 0.14 CMOS drop compared to the ground-truth pitch/duration.

5Ideally, we should also use ground-truth phoneme hidden sequence as input. However, ground-truth hidden
sequence cannot be obtained. Thus, this comparison setting is just a approximation.
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• Phoneme Encoder. Since it is not straightforward to construct the upper bound of the phoneme
encoder, we analyze the approximate quality drop through backward verification, by improving
phoneme encoder for better voice quality. We conduct large-scale phoneme pre-training on the
phoneme encoder, and fine-tune it with the FastSpeech 2 training pipeline, and achieves a 0.12
CMOS gain, as shown in Table 7, which demonstrates the phoneme encoder has improvement
space.

According to the above experimental studies, we analyze several reasons causing the quality drop in
each component: 1) Training-inference mismatch. Ground-truth mel-spectrogram, pitch, and duration
are used in training, while predicted values are used in inference, which causes mismatch in the input
of vocoder and mel-spectrogram decoder. Fully end-to-end text to waveform optimization is helpful
to eliminate this mismatch. 2) One-to-many mapping problem. Text to speech mapping is one-to-
many, where a text sequence can correspond to multiple speech utterances with different variation
information (e.g., pitch, duration, speed, pause, prosody, etc). Current systems usually use a variance
adaptor to predict variance information (e.g., pitch, duration) to alleviate this problem, which is not
enough to well handle this problem. We should rethink previous methods on variance information
and come up with some thorough and elegant solutions. 3) Lack of representation capacity. Current
models are not powerful enough to extract good representations from phoneme sequence and learn
complicated data distribution in speech. More advanced methods such as large-scale pre-training and
powerful generative models are critical to enhance the learning capacity.

B Differentiable Durator

To enable end-to-end duration optimization, we design a durator that can upsample a phoneme hidden
sequence Hn×h into a frame-level hidden sequence Om×h in a differentiable way, where h, n,m is
the hidden dimension size, phoneme sequence length and frame sequence length, respectively. The
differentiable durator consists of a duration predictor θdp for phoneme duration prediction and a
learnable upsampling layer θlu for sequence expansion from phoneme level to frame level.

Duration Predictor The input to the duration predictor θdp is phoneme hidden sequence Hn×h
and the output is the estimated phoneme duration d̂n×1. The duration predictor θdp consists of
3 layers of one-dimensional convolution, with ReLU activation, layer normalization, and dropout
between each layer.

Learnable Upsampling Layer The learnable upsampling layer θlu takes phoneme duration d
as input and upsamples phoneme hidden sequence H to frame-level sequence O [42]. First, we
calculate the duration start and end matrices Sm×n and Em×n by

Si,j = i−
j−1∑
k=1

dk, Ei,j =

j∑
k=1

dk − i, (6)

where Si,j indexes the (i, j)-th element in the matrix. We calculate the primary attention matrix
Wm×n×q and auxiliary context matrix Cm×n×p following [42]:

W = Softmax(MLP
10→q

([S,E,Expand(Conv1D(Proj(H)))])), (7)

C = MLP
10→p

([S,E,Expand(Conv1D(Proj(H)))]), (8)

where Proj(·) represents one linear layer with input and output dimensions of h. Conv1D(·) is
one-dimensional convolution operation with layer normalization and Swish activation [53]. The input
and output dimensions of Conv1D(·) are h and 8. Expand(·) means adding an extra dimension by
repeating the input matrix bym times. [·] stands for matrix concatenation along the hidden dimension,
and gets a hidden dimension of 10 = 1 + 1 + 8. MLP(·) is a two-layer full-connected network with
Swish activations. The numbers underneath MLP denote the input and output hidden dimensions.
We set p = 2 and q = 4. The Softmax(·) operation is performed on the sequence time dimension.
We calculate the frame-level hidden sequence output Om×d with the following equation:

O = Proj
qh→h

(WH) + Proj
qp→h

(Einsum(W ,C)), (9)
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where Einsum(·) represents the einsum operation (‘qmn,mnp→ qmp’,W ,C). We first permute
W from m× n× q to q ×m× n for computation, and after we get WH with shape q ×m× h
and Einsum(W ,C) with shape q×m× p, we reshape them to m× qh and m× qp respectively for
final projection to dimension m× h. Finally, we map O with a mean and variance linear layer to get
the frame-level prior distribution parameter µ(y; θpri) and σ(y; θpri), and get the prior distribution
p(z′|y; θpri) = N (z′;µ(y; θpri), σ(y; θpri)).

Compared to simply repeating each phoneme hidden sequence with the predicted duration in a hard
way, the learnable upsampling layer enables more flexible duration adjustment for each phoneme.
Also, the learnable upsampling layer makes the phoneme to frame expansion differentiable, and thus
can be jointly optimized with other modules in the TTS system.

C Alternative Formulation of Bidirectional Prior/Posterior

We provide another formulation of the backward loss Lbwd in Equation 1 and forward loss Lfwd in
Equation 2 by directly using KL loss to match two distributions.

For the backward loss, we directly match the posterior q(z|x;φ) to the prior p(z|y; θpri):

Lbwd(φ, θbpp, θpri) = KL[q(z|x;φ)||p(z|y; θpri))] = Ez∼q(z|x;φ)(log q(z|x;φ)− log p(z|y; θpri))

= Ez∼q(z|x;φ)(log q(z|x;φ)− log p(f−1(z; θbpp)|y; θpri))|det
∂f−1(z; θbpp)

∂z
|),

(10)
where f−1(z; θbpp) = z′, and p(z|y; θpri)) = p(f−1(z; θbpp)|y; θpri))|det

∂f−1(z;θbpp)
∂z |) according to

the change of variable rule.

For the forward loss, we directly match the prior p(z′|y; θpri) to the posterior q(z′|x;φ):

Lfwd(φ, θbpp, θpri) = KL[p(z′|y; θpri)||q(z′|x;φ)] = Ez′∼p(z′|y;θpri)(log p(z′|y; θpri)− log q(z′|x;φ))

= Ez′∼p(z′|y;θpri)(log p(z′|y; θpri)− log q(f(z′; θbpp)|x;φ)|det
∂f(z′; θbpp)

∂z′
|),

(11)
where f(z′; θbpp) = z, and q(z′|x;φ)) = q(f(z′; θbpp)|x;φ)|det

∂f(z′;θbpp)
∂z′ |) according to the change

of variable rule.

D Soft Dynamic Time Warping in KL loss

Since the frame-level prior distribution p(z′|y; θpri) usually has different lengths from the ground-
truth speech frames, the standard KL loss cannot be applied. Therefore, we use a soft dynamic time
warping (Soft-DTW) of KL loss for Lbwd and Lfwd to circumvent this mismatch.

The Soft-DTW version of the KL loss for Lbwd can be obtained by recursive calculation:

ri,j = minγ


ri−1,j +KL[q(z′i−1|x;φ, θbpp)||p(z′j |y; θpri)] + warp

ri,j−1 +KL[q(z′i|x;φ, θbpp)||p(z′j−1|y; θpri)] + warp

ri−1,j−1 +KL[q(z′i−1|x;φ, θbpp)||p(z′j−1|y; θpri)]

, (12)

where ri,j is the KL divergence loss between the simplified posterior q(z′|x;φ, θbpp) from
frame 1 to frame i and the prior p(z′|y; θpri) from frame 1 to frame j with the best alignment.
KL[q(z′∗|x;φ, θbpp)||p(z′∗|y; θpri)] is defined in Equation 1. minγ a soft-min operator, which is de-
fined as minγ(a1, ..., an) = −γ log Σie

− aiγ and γ = 0.01. warp is a warp penalty for not choosing
the diagonal path and is set as 0.07. q(z′i|x;φ, θbpp) is the i-th frame of the simplified posterior, and
p(z′j |y; θpri) is the j-th frame of the prior.

The Soft-DTW version of KL loss for Lfwd is similar to that of Lbwd, which can be defined as:

ri,j = minγ


ri−1,j +KL[p(zi−1|y; θpri, θbpp)||q(zj |x;φ)] + warp

ri,j−1 +KL[p(zi|y; θpri, θbpp)||q(zj−1|x;φ)] + warp

ri−1,j−1 +KL[p(zi−1|y; θpri, θbpp)||q(zj−1|x;φ)]

, (13)
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where ri,j is the KL divergence loss between the enhanced prior p(z|y; θpri, θbpp) from frame
1 to frame i and the posterior q(z|x;φ) from frame 1 to frame j with the best alignment.
KL[p(z∗|y; θpri, θbpp)||q(z∗|x;φ)] is defined in Equation 2. p(zi|y; θpri, θbpp) is the i-th frame
of the enhanced prior, and q(zj |x;φ) is the j-th frame of the posterior.

E Waveform Decoder Loss

Instead of using negative log-likelihood loss in waveform reconstruction and prediction in Equation 3
and 4, we use GAN loss, feature mapping loss, and mel-spectrogram loss as used in [17].

GAN Loss The GAN loss follows LS-GAN [54], which is defined as follows. The generator is
trained to minimize the loss function while the discriminator is train to maximize it:

Ex[(D(x)− 1)2] + Ez[D(G(z))2] (14)

where is x the ground-truth waveform and z is the input of waveform decoder. We follow [15] for the
design of discriminators.

Feature Mapping Loss The feature mapping loss consists of the L1 distance between real samples
and fake samples in terms of the intermediate feature in each layer of the discriminator, which can be
formulated as:

E(x,z)[
∑
l

1

Nl
||Dl(x)−Dl(G(z))||1] (15)

where l is the layer index in discriminator, Dl(·) and Nl are the features and the number of features
in the l-th layer of the discriminator, respectively.

Mel-Spectrogram Loss The mel-spectrogram loss is L1 distance between the mel-spectrogram of
ground-truth waveform and that of generated waveform, which can be defined as:

E(x,z) = ||S(x)− S(G(z))||1 (16)

where S(·) is the function that converts the waveform into corresponding mel-spectrogram.

F Training Details of NaturalSpeech

Phoneme Pre-training We pre-train our phoneme encoder on 200M phoneme sequences, which is
converted from text with grapheme-to-phoneme conversion. The size of the phoneme dictionary is
182. We learn the sup-phoneme using Byte-Pair Encoding (BPE) [55] with a sup-phoneme dictionary
size of 30, 088. We conduct the pre-training on 8 NVIDIA A100 GPUs with 80G memory (we only
use A100 for phoneme pre-training, and use V100 for the remaining training of NaturalSpeech), with
a total batch size of 1, 024 sentences for 120k training steps. The mask ratio for sup-phoneme is 15%.

Duration Predictor In the warmup stage (the first 1k epochs), we obtain the duration label to train
the duration predictor to speed up the convergence of differentiable durator. We can choose any tools to
provide duration label, such as Montreal forced alignment [56]. Here we choose monotonic alignment
search (MAS) [13], which estimates the optimal alignment between the phoneme prior distribution
p(z′|y; θpho) = N (z′;µ(y; θpho), σ(y; θpho)) and simplified frame-level posterior q(z′|x;φ, θbpp),
where µ(y; θpho), σ(y; θpri) are the mean and variance parameters obtained from the phoneme hidden
sequence by two linear layers. The monotonic and non-skipping constraints of MAS provide the
inductive bias that human read words in orders without skipping. The optimal alignment search result
A can be formulated as

A = arg max
A

Σmi=1N (z′i;µ(y; θpho)A(i), σ(y; θpho)A(i)), (17)

where A(i) denotes the aligned phoneme index of the i-th frame z′i from q(z′|x;φ, θbpp). We search
the alignment result using dynamic programming. Let Qi,j denote the probability of z′i belongs to
the prior distribution of the j-th phoneme, then we can formulate Qi,j recursively with Qi−1,j−1 and
Qi,j−1 with the following equation:
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Qi,j = max(Qi−1,j−1, Qi−1,j) + log N (z′i;µ(y; θpho)j , σ(y; θpho)j). (18)
We calculate all the Qi,j from i = 0, j = 0 to i = m, j = n. Since the best alignment path is
determined by the highest Q value, we utilize all the cached Q value to backtrack from Qm,n to Q0,0

for the most probable alignment A.

Note that in the warmup training stage, the duration d comes from MAS. After the warmup stage, the
input duration comes from the duration predictor d̂. During the whole training process, we apply
gradient stop operation on the input of duration predictor.

Bidirectional Prior/Posterior For the two loss terms Lbwd and Lfwd in bidirectional prior/posterior
module, we only use Lbwd during the warmup stage to learn a reasonable prior distribution, and then
add Lfwd to the loss function for bidirectional optimization after the warmup stage.

VAE with Memory In the warmup stage, we do not use the memory bank in VAE training, i.e.,
z ∼ q(z|x;φ) is directly taken as the input of the waveform decoder. After the warmup stage, we
initialize the memory banks M as follows: we first get the posterior z ∼ q(z|x;φ) of each frame of
the utterances in the training set, and then conduct K-means clustering on these z to get 1K clusters,
and use the cluster center to initialize the memory bank M . After the initialization, we jointly train
the memory mechanism with the whole TTS system.

In the tuning stage (the last 2k epochs), we only use Le2e to tune the model. We freeze the parameters
of posterior encoder, waveform decoder, phoneme encoder, and bidirectional prior/posterior, and only
update the durator for fully end-to-end duration optimization.

G Hyper-Parameters of NaturalSpeech

The hyper-parameters of NaturalSpeech are listed in Table 8.

The number of model parameters for θpho, θdur, θbpp, and θdec is 28.7M, for the posterior encoder φ
is 7.2M, and for the discriminators is 46.7M. Note that only θpho, θdur, θbpp, and θdec with 28.7M
model parameters are used in inference.
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Table 8: Hyper-parameters of NaturalSpeech.
Module Hyper-Parameter Value

Phoneme Encoder θpho

Phoneme Encoder Embedding Dimension 192
Phoneme Encoder Blocks 6
Phoneme Encoder Multi-Head Attention Hidden Dimension 192
Phoneme Encoder Multi-Head Attention Heads 2
Phoneme Encoder Conv Kernel Size 3
Phoneme Encoder Conv Filter Size 768
Phoneme Encoder Dropout 0.1

Durator θdur

Duration Predictor Kernel Size 3
Duration Predictor Filter Size 192
Duration Predictor Dropout 0.5
Upsampling Layer Kernel Size 3
Upsampling Layer Filter Size 8

Prior/Posterior θbpp

Flow Model Affine Coupling Layers 4
Flow Model Affine Coupling Dilation 1
Flow Model Affine Coupling Kernel Size 5
Flow Model Affine Coupling Filter Size 192
Flow Model Affine Coupling WaveNet Layers 4

Waveform Decoder θdec

Waveform Decoder ConvBlocks 4
Waveform Decoder ConvBlock Hidden [256, 128, 64, 32]
Waveform Decoder ConvBlock Upsampling Ratio [8, 8, 2, 2]
Waveform Decoder ConvLayers 3
Waveform Decoder ConvLayer Kernel Size [3, 7, 11]
Waveform Decoder Conv Dilation [1, 3, 5]
Memory Banks Size 1000
Memory Banks Hidden Dimension 192
Memory Banks Attention Heads 2

Posterior Encoder φ

Posterior Encoder WaveNet Layers 16
Posterior Encoder Dilation 1
Posterior Encoder Conv Kernel Size 5
Posterior Encoder Conv Filter Size 192

Discriminator D Multi-Period Discriminator Periods [1, 2, 3, 5, 7, 11]
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