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Abstract 

Speech synthesis has made significant strides thanks to the transition from machine learning to deep learning mod-
els. Contemporary text-to-speech (TTS) models possess the capability to generate speech of exceptionally high qual-
ity, closely mimicking human speech. Nevertheless, given the wide array of applications now employing TTS models, 
mere high-quality speech generation is no longer sufficient. Present-day TTS models must also excel at producing 
expressive speech that can convey various speaking styles and emotions, akin to human speech. Consequently, 
researchers have concentrated their efforts on developing more efficient models for expressive speech synthesis 
in recent years. This paper presents a systematic review of the literature on expressive speech synthesis models pub-
lished within the last 5 years, with a particular emphasis on approaches based on deep learning. We offer a compre-
hensive classification scheme for these models and provide concise descriptions of models falling into each category. 
Additionally, we summarize the principal challenges encountered in this research domain and outline the strategies 
employed to tackle these challenges as documented in the literature. In the Section 8, we pinpoint some research 
gaps in this field that necessitate further exploration. Our objective with this work is to give an all-encompassing over-
view of this hot research area to offer guidance to interested researchers and future endeavors in this field.
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1 Introduction
Since the late 1950s, computer-based text-to-speech 
systems (TTS) have undergone significant advance-
ments [1], culminating in the production of models 
that generate speech almost indistinguishable from 
that of a human. This progress has followed a path 
consisting of several stages, beginning with conven-
tional methods named as concatenative synthesis and 
progressing to more advanced approaches known as 

statistical parametric speech synthesis (SPSS). Advanced 
approaches are mainly based on machine learning algo-
rithms like hidden Markov models (HMMs) and gaussian 
mixture models (GMMs). Despite this progress, speech 
generated by these methods was still noticeably artificial. 
However, the emergence of deep learning (DL) as a new 
branch under machine learning (ML) in 2006 has led to 
significant improvements. Speech synthesis researchers, 
like many in other research fields, started incorporating 
deep neural networks (DNN) in their models. Initially, 
DNNs replaced HMMs and GMMs in SPSS models while 
the main structure still follows the primary framework of 
SPSS models as shown in Fig. 1. As discussed in [2], the 
deep learning-based models have overcome many limi-
tations and problems associated with machine learning-
based models.
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Researchers continue to aim for improved speech qual-
ity and more human-like speech despite past advance-
ments. Additionally, they seek to simplify the framework 
of the text-to-speech models due to the intricate nature 
of the SPSS structure, which limits progress in this field 
to those with extensive linguistic knowledge and exper-
tise. Deep learning advancements have brought about 
the simple encoder-decoder structure for TTS models as 
sequence-to-sequence (Seq2Seq) approaches. The pro-
posed approaches have simplified the structure of con-
ventional TTS with multiple components into training 
a single network that converts a set of input text char-
acters/phonemes into a set of acoustic features (mel-
spectrograms). A main concern in these advanced TTS 
models is the mapping process between the input and 
output sequences, which is a one-to-many problem, as 
the single input text can have multiple speech variations 
as output. In fact, there are two groups of recent TTS 
models, as shown in Fig. 2. The first group generates mel-
spectrograms in a sequential (autoregressive) manner 
using soft and automatic attention alignments between 
input and output sequences, such as the Tacotron 
model [3, 4]. The second group utilizes hard alignments 
between the phonemes/characters and mel-spectro-
grams, and thus its speech generation process is parallel 

(non-autoregressive), as in the FastSpeech model [5, 6]. 
This improvement in the structure of the TTS model has 
encouraged rapid development in the field within the last 
few years, during which the proposed models produced 
speech that is nearly indistinguishable from human 
speech.

Human speech is highly expressive and reflects vari-
ous factors, such as the speaker’s identity, emotion, and 
speaking style. In addition, there are many applications in 
which speech synthesis can be utilized, especially expres-
sive speech synthesis. For instance, audiobooks and pod-
cast applications that create audio versions of eBooks 
and podcasts, translation applications which provide 
real-time translation of foreign language text, dubbing 
applications that generate an alternative audio track for 
a video with different content, speaker, or language, and 
content creation applications which help produce audio 
versions of textual content, such as blogs and news arti-
cles. E-learning applications that allow for adding voice-
over audio to e-learning courses, and conversational AI 
applications enable machines to communicate with users 
in a human-like manner, such as AI chatbots and virtual 
assistants.

As spoken language is a crucial component in 
such applications, users must feel as if they are 

Fig. 1 Statistical parametric speech synthesis model structure

Fig. 2 Structure of TTS models based on deep learning. The autoregressive models follows the upper track with sequential attention mechanism, 
non-autoregressive models follow the lower track with parallel attention unit utilizing alignments from an external aligner or a pretrained 
autoregressive model
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communicating with a real human rather than a 
machine. Therefore, the speech generated by these 
applications should convey appropriate emotion, into-
nation, stress, and speaking style to match the ongoing 
conversation or the content type and context of the text 
being read.

As a result, there has been a recent attention towards 
building efficient expressive speech synthesis models as 
another step forward in achieving human-like speech. 
Therefore, many studies have been devoted to expressive 
speech synthesis (ETTS) as a hot research area, particu-
larly over the last 5 years. In this work, we present the 
findings of our systematic literature review on ETTS 
field from the past 5 years. Firstly, we suggest a classifi-
cation schema of deep learning-based ETTS models that 
are proposed during this period, based on structures, 
and learning methods followed in each study. A sum-
mary is then provided for each category in the classifi-
cation schema and main papers related to this category. 
After that, we outline the main challenges in the ETTS 
area and solutions that have been proposed to solve them 
from literature. Finally, we conclude with a discussion of 
the implications of our work and a highlight of some gaps 
that require further research in this area.

During our work on this review of expressive speech 
synthesis literature, we came across several review 
papers that focus on different stages of development in 
the speech synthesis field. The majority of these reviews 
concentrate on DL-based TTS approaches [7–13], while 
only a few papers [13, 14] cover recent TTS approaches 
in addition to early conventional ones. However, to the 
best of our knowledge, there are no review papers that 
cover the fast growth in the (expressive) speech synthesis 
area, especially in the last few years. Therefore, our main 
goal in this review is to provide an overview of research 
trends, techniques, and challenges in this area during this 
period. We hope that our work will offer researchers a 
comprehensive understanding of how and what has been 
accomplished in this field and the gaps that need to be 
filled as guidance for their future efforts.

While we were writing this paper, we came across an 
interesting recent review paper [15] that is similar to 
our work. However, the review in [15] covers emotional 
speech synthesis (ESS) as a sub-field of voice transfor-
mation while our work is more comprehensive as a sys-
tematic literature review that discusses approaches, 
challenges, and resources. Furthermore, the taxonomy 
we provide for the reviewed approaches differs from the 
one given in [15] as elaborated in the next section.

The remaining sections of this paper are structured as 
follows: Section  2 provides an explanation of the meth-
odology employed for conducting this review. Sections 3 
and 4 describe the different main and sub-categories of 
the proposed classification schema for DL-based expres-
sive TTS models. Main challenges facing ETTS mod-
els and how they have been tackled in the literature are 
covered in Section  5. We then give a brief description 
of ETTS datasets and applied evaluation metrics in Sec-
tions  6 and 7, respectively. Finally, Section  8 concludes 
the paper.

2  Method
The last few years have seen rapid growth in expressive 
and emotional speech synthesis approaches, resulting in 
a large number of papers and publications in this area. 
Here, we present the outcomes of a systematic literature 
review of the last 5 years’ publications within this active 
research area. This section describes the methodology 
used to conduct the review, illustrated by Fig.  3, which 
consists of three main stages: paper selection, paper 
exclusion, and paper classification.

2.1  Paper selection
For our review, we used the Scopus [16] database to 
retrieve papers as it encompasses most of the significant 
journals and conferences pertaining to the speech syn-
thesis field. Our query criteria to find relevant papers 
on Scopus were twofold: (1) the paper title must include 
at least one of four words (emotion* OR expressive OR 
prosod* OR style) that denote expressive speech, and (2) 

Fig. 3 Flowchart of methodology used for selecting publications
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the paper title, abstract, or keywords must comprise the 
terms “speech” AND “synthesis,” in addition to at least 
one of the above-mentioned words for expressive speech. 
We considered all papers written in English and pub-
lished in journals or conferences since 2018. The search 
query was conducted in January 2023, and it yielded 356 
papers. Scopus provides an Excel file containing all the 
primary information of the retrieved papers, which we 
used in the second stage of our review.

2.2  Exclusion of papers
The exclusion of papers occurred in two phases. In the 
first phase, we screened the abstract text, while in the 
second phase, we screened the full text of the paper. Five 
main constraints were used to exclude papers, includ-
ing (1) papers that were not related to the TTS field, (2) 
papers that were not DL-based models, (3) papers that 
did not focus on expressive or emotional TTS models, (4) 
papers that were too specific to non-English languages, 
and (5) papers that lacked details about the applied 
method. After screening the paper abstracts, we excluded 
180 papers, mostly based on the first exclusion criterion. 
During the second exclusion phase, in which we read the 
full text of each paper, we identified another 65 papers 
that met at least one of the five exclusion criteria. Con-
sequently, 111 papers were included in the third stage of 
our review. Additionally, a group of recently published 
papers in this area [17–25] was hand-picked and added 
to the final set of selected papers. While most of the 
reviewed papers trained their models on English data, a 
few other papers used data in other languages as listed in 
Table 1.

2.3  Paper classification
After summarizing the approach proposed for generat-
ing expressive speech in each selected paper, we catego-
rized the papers based on the learning approach applied 
in each one. Accordingly, papers are divided into two 

main categories, including supervised and unsuper-
vised approaches. Under the supervised category, where 
labeled data is utilized, we identified three subcategories 
based on how models are employed expressive speech 
synthesis. The three proposed subcategories are (1) 
labels as input features, (2) labels as separate layers or 
models, and (3) labels for emotion predictors/classifiers.

Papers in the unsupervised approaches category are 
grouped into four different subcategories based on the main 
structure or method used for modeling expressivity in these 
papers. From our observation, most of the proposed meth-
ods in the last 5 years are based on three main early works in 
this field, namely, reference encoder [74], global style tokens 
[75], and latent features via variational autoencoders (VAE) 
[76, 77]. Specifically, proposed models in most of the papers 
under this category can be considered as an extension or 
enhancement of one of the three previously mentioned 
methods. Besides, we identify a fourth subcategory that 
includes the recent TTS models representing the new trend 
in the TTS area, which utilizes in-context learning. There is 
one factor common to all these four unsupervised models, 
which is that they are all based on using an audio reference/
prompt. Additionally, we added a fifth subcategory (named 
other approaches) in which we include approaches outside 
the previous four main unsupervised approaches. Figure 4 
illustrates the proposed classification schema for the DL-
based expressive speech synthesis models.

3  Supervised approaches
Supervised approaches refer to models that are trained 
on datasets with emotion labels. Those labels guide 
model training, enabling it to learn accurate weights. 
Early deep learning-based expressive speech synthesis 
systems were primarily supervised models that utilized 
labeled speech exhibiting various emotions (such as sad-
ness, happiness, and anger) or speaking styles (such as 
talk-show, newscaster, and call-center). Note that the 
term style has also been used to refer to a set of emotions 
or a mixture of emotions and speaking styles [59, 68, 78, 
79]. Generally, the structure of early conventional TTS 
models was built upon two primary networks: one for 
predicting duration and the other for predicting acoustic 
features. These acoustic features were then converted to 
speech using vocoders. Both networks receive linguis-
tic features extracted from the input text. In supervised 
ETTS approaches, speech labels (emotions and/or styles) 
are represented in the TTS model as either input features 
or as separate layers, models, or sets of neurons for each 
specific label. The following sections explain these three 
representations in detail then we provide a general sum-
mary of the supervised approaches reviewed in this work 
in Table 2.

Table 1 List of other languages than English used in the 
reviewed publications to train proposed ETTS models with links 
to related papers

Language References # papers

Chinese [23, 26–40] 16

Mandarin Chinese [17, 21, 36, 41–54] 18

Korean [19, 55–64] 11

Japanese [65–70] 6

Mexican-Spanish [20, 71] 2

Telugu [72] 1

Bahasa Indonesia [73] 1

Multilingual [19, 25, 36, 44, 53–55] 7
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3.1  Labels as input features
The most straightforward method for representing 
emotion labels of annotated datasets as input to the 
TTS model is by using a one-hot vector. This approach 
entails using a vector with a size equivalent to the 

number of available labels. In this vector, a value of (1) 
is assigned to the index corresponding to the label ID, 
while all other values are set to (0). Many early ETTS 
models [43, 56, 65, 69, 78, 80, 82, 84] advocated for 
this direct representation of emotion labels in order 

Fig. 4 General proposed classification schema of the deep learning based models for expressive speech synthesis

Table 2 Summary of supervised ETTS approaches. “LingF” stand for linguistic features, “EmoL” stands for emotion labels, “MelS” stands 
for mel-spectrograms, “PhnSq” stands for phoneme sequence, “ChrSq” stands for character sequence, “ProsF” stands for prosodic 
features, “LM-F” stands for features from a language model and “ET” stands for expression/emotion transplantation

Ref No. Inputs Emotion label representation ET TTS model

[80] LingF+EmoL One-hot vector DL-SPSS, HMM

[65] LingF+EmoL One-hot vector/dependent layers � DL-SPSS

[66] LingF+EmoL Perception vector/matrix DL-SPSS

[41] LingF+EmoL One-hot vector DL-SPSS

[42] LingF+EmoL Dependent layers DL-SPSS

[81] LingF+EmoL One-hot vector/set of neurons � DL-SPSS

[43] LingF+EmoL One-hot vector/dependent layers/separated Model DL-SPSS

[82] LingF+EmoL One-hot vector � DL-SPSS

[83] PhnSq+LM-F+EmoL Embedding vector Encode-Dttention-Decoder

[28, 78] LingF+EmoL One-hot vector/dependent layers/separated Model � DL-SPSS

[26] PhnSq+MelS+EmoL One-hot vector as ground truth GSTs weights Tacotron2

[27] PhnSq+LingF+EmoL Embedding vector Tacotron2

[84] LingF+EmoL Joint embedding with other data labels DL-SPSS

[85] LingF+ProsF+EmoL Ground truth for a classifier DL-SPSS

[86] PhnSq+EmoL Embedding vector Transformer TTS

[32, 36] ChrSq+MelS+EmoL Ground truth for a classifier Tacotron2

[69] LingF+EmoL One-hot vector/dependent layers � DL-SPSS

[34] PhnSq+MelS+EmoL Ground truth for a classifier Tacotron2

[64] ChrSq+LM-F+EmoL Ground truth for a predictor Tacotron2

[39, 87] PhnSq+MelS+EmoL Ground truth for a classifier Tacotron2
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to generate speech encompassing various emotions. 
The one-hot emotion vector, also referred to as a 
style/emotion code in some studies [43, 78, 80, 82], is 
concatenated with the input linguistic features of the 
model.

When dealing with large number of labels, the one-
hot representation becomes both high-dimensional 
and sparse. Moreover, in other scenarios, merging 
label vectors with input features instead of concatena-
tion can lead to length mismatch issues. In both situa-
tions, the embedding layer offers a solution by creating 
a continuous representation for each label, known as 
embedding vectors. Unlike the one-hot vector, which is 
constrained in size based on the number of labels, an 
emotion embedding can have any dimension, regard-
less of the number of available labels.

For instance, in [84], each sample in the training data-
set has three separated labels including speaker, style 
(emotion), and cluster. In this context, the cluster value 
indicates the consistency in speech quality of a given 
speaker and style pair. If one-hot vector is used to rep-
resent each unique combined label of each sample, the 
resulting label vector will be high dimensional (which 
in this case is 67). Therefore, the three one-hot vec-
tors representing the given three labels are combined 
and passed as input to an embedding layer to reduce 
its dimension (in this case 15). On a different note, [41] 
utilizes an embedding layer to expand concise binary 
one-hot label vectors to match with the dimensions of 
the input features to be added together as input to the 
TTS model.

To address the potential disparities between a talk-
er’s intent and a listener’s perception when annotating 
emotional samples, in [66], a different methodology 
for representing labels is introduced. In the context of 
N emotion classes, each sample from the talker may be 
perceived by the listener as one of the N emotions. In 
response to this, the paper suggests the adoption of a 
singular vector termed the ’perception vector,’ with N 
dimensions. This vector represents how samples from 
a specific emotion class are distributed among the N 
emotions, based on the listener’s perception. Further-
more, in the context of multiple listeners, each emotion 
class can be represented as a confusion matrix that cap-
tures the diverse perceptions of samples belonging to 
that emotion class by multiple listeners.

3.2  Labels as separate layers/models
In this approach, to represent emotion or style labels in 
TTS models, each label is associated with either a sepa-
rate instance of the DNN model, an emotion-specific 
layers, or a set of emotion-specific neurons within a 
layer. Initially, the model is trained using neutral data, 

which typically has larger size. Subsequently, in the first 
approach, multiple copies of the trained model are fine-
tuned using emotion-specific data of small size [43, 78]. 
In the second approach, instead of creating an individual 
model for each emotion, only specific model layers (usu-
ally the uppermost or final layers) from the employed 
DNN model are assigned to each emotion [43, 65, 69, 78] 
as shown by Fig. 5. While shared layers are adjusted dur-
ing training using neutral data, output layers correspond-
ing to each emotion are modified exclusively when the 
model is trained with data from the respective emotion.

Alternatively, when dealing with limited data for cer-
tain emotions/styles, the model can initially undergo 
training for emotions with large amount of data. Follow-
ing this step, the weights of the shared layers within the 
model are fixed, and only the weights of the top layers 
are fine-tuned using the limited, emotion-specific data 
[42]. Another method for representing emotion labels 
involves allocating specific neurons from a layer within 
the DNN model for each emotion. In this approach, the 
hidden layers of the model could be expanded by intro-
ducing new neurons. Then, as outlined in [81], particular 
neurons from this expanded set are assigned to repre-
sent each distinct emotion. Importantly, the associated 
weights of these specific neuron subsets are adjusted 
solely during the processing of data relevant to the corre-
sponding emotion. Furthermore, by substituting the sub-
set of neurons dedicated to a particular emotional class 
with a different set, the model becomes capable of gen-
erating speech imbued with the desired emotional class. 
This capability holds true even for new speakers who 
only possess neutral data, and in this case, it is known as 
expression/emotion transplantation.

3.3  Labels for emotion predictors/classifiers
Another common approach to utilize emotion labels is 
to use them directly or via emotion predictor or classi-
fier to support the process of extracting emotion/prosody 
embedding. For example, in [26] emotion labels rep-
resented as one-hot vectors are used as targets for the 
weight vectors of GSTs (explained in Section 4.3) where 
a cross entropy loss between the two vectors is added to 
the total loss function. Yoon et  al. [64] proposes a joint 
emotion predictor based on the Generative Pre-trained 
Transformer (GPT)-3 [88]. The proposed predictor pro-
duces two outputs including emotion class and emo-
tion strength based on features extracted from input 
text by (GPT)-3. A joint emotion encoder is then used 
to encode the predictor outputs into a joint emotion 
embedding. The joint emotion predictor is trained with 
the guidance of the emotion labels and emotion strength 
values obtained via a ranking support vector machine 
(RankSVM) [89].
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In [32], an emotion classifier is used to produce 
more discriminative emotion embeddings. Initially, the 
input Mel-spectrogram features from the reference-
style audio and those predicted by the proposed TTS 
model are passed to two reference encoders (explained 
in Section 4.1) to generate reference embeddings. Both 
embeddings are then fed to two emotion classifiers, 
which consist of intermediate fully connected (FC) 
layers. The output of the second FC layer from both  
classifiers is considered as the emotion embedding. 
Apart from the loss of the classifiers, an additional loss 
function is established between the resulting emo-
tion embeddings from the two classifiers. Similarly, an  
emotion classifier is also employed in [36] to reduce 
irrelevant information in the generated emotion embed-
ding from an emotion encoder with reference speech 
(Mel-spectrogram) as input.

Several other studies [34, 36, 39] that support multi-
ple speakers also suggest utilizing a speaker classifier in 
addition to the emotion classifier. This approach aims to 
improved the speaker embedding derived from speaker 
encoders. Moreover, these studies introduce an adver-
sarial loss between the speaker encoder and the emo-
tion classifier using a gradient reversal layer (GRL) [90]. 
The purpose of this is to minimize the potential transfer 
of emotion-related information into the speaker embed-
ding. The GRL technique involves updating the weights 
of the speaker encoder by utilizing the inverse of the gra-
dient values obtained from the emotion classifier during 
the training process.

4  Unsupervised approaches
Due to the limited availability and challenges associated 
with collecting or preparing labeled datasets of expres-
sive speech, as discussed in Section 6, many researchers 
tend to resort to unsupervised approaches for generat-
ing expressive speech. Within these approaches, models 
are trained to extract speaking styles or emotions from 
expressive speech data through unsupervised methods. 
Unsupervised models typically utilize reference speech 
as an input to the TTS model, which extracts a style or 
prosody embedding which is then used to synthesize 
speech resembling the input style reference. In the lit-
erature, three primary structures emerge as baseline 
models for unsupervised ETTS models: including refer-
ence encoders, global style tokens, and variational auto-
encoders, which are explained in the following three 
sections. In addition, we identify the recent TTS mod-
els that utilize in-context learning as another group of 
unsupervised approaches. The last subcategory under 
the unsupervised approaches involves other individual 
approaches. We then provide a general summary of all 
the unsupervised approaches reviewed in this work in 
Table 3.

4.1  Direct reference encoding
The main approach, based on a reference or prosody 
encoder, can be traced back to an early Google paper 
[74]. The paper suggests using a reference encoder to 
produce a low-dimensional embedding for a given style 

Fig. 5 Labels represented as multiple separated layers, the shared layers are trained with data from all emotions, the emotion specific layers are 
trained with emotion related data only
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reference audio, which is called a prosody embedding. 
This encoder takes spectrograms as input to represent 
the reference audio. The generated prosody embedding 
is then concatenated with the text embedding derived 
from the text encoder of a Seq2Seq TTS model such as 
Tacotron [3, 4]. Figure  6 shows reference encoder inte-
grated to the TTS model.

Various features have been employed in the literature 
as inputs for the reference encoder. For example, in the 

work [85], MFCC features extracted using the openS-
MILE toolkit [139] are fed into one of the encoders 
within its style extraction model, which is composed of a 
multi-modal dual recurrent encoder (MDRE). In another 
study [31], the reference encoder is proposed as a rank-
ing function model, aimed at learning emotion strength 
at the phoneme level. This model leverages the OpenS-
MILE toolkit to extract 384-dimensional emotion-related 
features from segments of reference audio, derived 

Table 3 Summary of unsupervised approaches. “RE” refers to direct reference encoding, “VAE” refers to approaches based on VAEs, 
“GST” refers to approaches based on GSTs and “ICL” refers to approaches based on in-context learning. Prosody level “U” stands for 
utterance, “Se” stands for sentence, “Pr” stands for phrase, “W” stands for word, “Sy” stands for syllable, “Pn” stands for phoneme, “C” stands 
for character and “F” stands for frame

Ref No Group TTS Model Prosody Level Ref No Group TTS Model Prosody Level

[58, 75, 91–94] GST Tacotron U [61, 95–98] RE FastSpeech2 Pn

[60, 62, 99–101] RE Tacotron2 U [74, 102–104] RE Tacotron U

[57, 105, 106] GST Tacotron2 U [53, 77, 107] VAE Tacotron2 U

[35, 47] VAE FastSpeech Pn [48, 108] OTHER Tacotron2 C

[109, 110] VAE CHiVE Se,W,Sy [49, 111] RE Tacotron2 U,Pn

[112, 113] RE Tacotron Pn [59] GST Tacotron2 Se

[114] GST Tacotron2 Pn [45] OTHER Tacotron2 Se

[115] OTHER Tacotron-like Pn [31] RE Tacotron U,Pn

[55] RE Tacotron Pn,F [29] OTHER Tacotron2 U

[116] RE FastSpeech2 W [68] VAE DL-SPSS U,Pr,W

[38] OTHER FastSpeech U,F [117] GST Transformer TTS U

[67] VAE DL-SPSS Pr [37] RE Tacotron2 U,Se

[118] RE FastSpeech2 U [19] RE Tacotronr2 U

[76] VAE Voice-loop U [119] VAE NTTS Pn

[120] RE Tacotron2 U,F [17] GST FastSpeech2 Se

[121] OTHER Tacotron U [122] RE Tacotron2 Sy

[123] VAE Tacotron2 W,Pn [71] OTHER Tacotron2 Pn

[124] OTHER Tacotron-like Pr,W [33] RE Tacotron/2 U,Sy

[51] RE Tacotron/2 U [125] OTHER Tacotron Pn

[126] VAE Tacotron Pn [52] RE FastSpeech U

[72] OTHER Prosody-TTS Pn [70] RE Fastspeech2 C

[18] ICL NaturalSpeech2 F [127] RE CopyCat, Tacotron2 W

[79] RE FastSpeech U,Pn [30] OTHER GraphPB U,Pr,W

[128] OTHER FastSpeech2 U,Pn [129] VAE DurIAN Se

[130] VAE Tacotron-like U,Pn [44] RE AlignTTS Pn

[131] VAE Tacotron-like Se [132] OTHER AdaSpeech 3 Pn

[63] RE Transformer TTS U,Pn [40] OTHER Transformer TTS U,W

[54] OTHER Tacotronr2 W [20] OTHER Tacotronr2 Pn

[21] RE InstructTTS Se [22] ICL VALL-E F

[23] RE VITS U,F [24] VAE FastSpeech 2 U,W

[25] ICL Voicebox F [46] GST Tacotron2 W

[73] GST Tacotron Sy [133] GST Tacotron Pn

[134] RE FastSpeech2 U,Pn [135] OTHER DL-SPSS Se,W,Sy,Pn

[136] GST FastSpeech2 U [50] GST FastSpeech2 U,Se,Sy

[137] GST Tacotron Pn [138] OTHER DL-SPSS F

[56] RE DL-SPSS U
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using a forced alignment model for phoneme bounda-
ries. Furthermore, in work [63], a word-level prosody 
embedding is generated. This is achieved by extracting 
phoneme-level F0 features from reference speech using 
the WORLD vocoder [140] and an internal aligner oper-
ating with the input text.

A prosody-aware module is proposed in [37] which 
extracts other prosody-related features. The prosody-
aware module consists of an encoder, an extractor, and a 
predictor. The encoder receives the three phoneme-level 
features including logarithmic fundamental frequency 
(LF0), intensity, and duration from the extractor as input 
and generates the paragraph prosody embedding with 
the assistance of an attention unit. Simultaneously, the 
predictor is trained to predict these features at inference 
time based on the input text embedding only.

In Daft-Exprt TTS model [118], the prosody encoder 
receives pitch, energy and spectrogram as input. The 
prosody encoder then uses FiLM conditioning layers 
[141] to carry out affine transformations to the inter-
mediate features of specific layers in the TTS model. A 
slightly modified version of the FastSpeech2 [6] model 
is utilized in this work where the phoneme encoder, 
prosody predictor and the decoder are the conditioned 
components. The prosody predictor is similar to the 
variance adaptor of FastSpeech2 but without the length 
regulator, and it estimates pitch, energy and duration at 
phoneme-level.

A pre-trained Wav2Vec model [142] has also been uti-
lized for extracting features from the reference waveform. 
These features serve as input to the reference encoders of 
the proposed Emo-VITS model [23], which integrates an 
emotion network into the VITS model [143] to enhance 
expressive speech synthesis. In fact, the emotion net-
work in the Emo-VITS model comprises two reference 
encoders. The resulting emotion embeddings from these 

encoders are then combined through a feature fusion 
module that employs an attention mechanism. Wav2vec 
2.0-derived features from the reference waveform in this 
work are particularly suitable for attention-based fusion 
and contribute to reducing the textual content within the 
resulting embeddings [23].

In contrast, [60] proposes a an image style transfer 
module to generate input for reference encoder. The con-
cept of image style transfer involves altering the artis-
tic style of an image from one domain to another while 
retaining the image’s original content [144]. In specific 
research, the style reconstruction module from VGG-19 
[145], a deep neural network primarily used for image 
classification, is employed to extract style-related infor-
mation from the Mel-spectrogram used as input image. 
Subsequently, the output of this module is fed into the 
reference encoder to generate the style embedding.

4.2  Latent features via variational auto‑encoders
The goal of TTS models under this is to map input 
speech from the higher dimensional space to a well-
organized and lower-dimensional latent space utilizing 
variational auto-encoders (VAEs) [146]. VAE is a genera-
tive model that is trained to learn the mapping between 
observed data x and continuous random vectors z in an 
unsupervised manner. In detail, VAEs learn a Gaussian 
distribution denoted as the latent space from which the 
latent vectors representing the given data x can be sam-
pled. A typical variational autoencoder consists of two 
components. First, the encoder learns the parameters of 
the z vectors (latent distribution), namely the mean µ(x) 
and variance σ 2(x) , based on the input data x. Second, 
the decoder regenerates the input data x based on latent 
vectors z sampled from the distribution learned by the 
encoder. In addition to the reconstruction loss between 
the model input and the data, variational autoencoders 

Fig. 6 Baseline model (1) for unsupervised approaches: Direct reference encoding integrated to an encoder-decoder TTS model
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are also trained to minimize a latent loss, which ensures 
that the latent space follows a Gaussian distribution.

Utilizing VAEs in expressive TTS models as shown 
by Fig.  7, allows for mapping the various speech styles 
within the given dataset to be encoded as latent vectors, 
often referred to as prosody vectors, within this latent 
space. During inference, these latent vectors can be sam-
pled directly or with the guidance of reference audio from 
the VAE’s latent space. Furthermore, the latent vectors 
offer the advantage of disentangling prosody features, 
meaning that some specific dimensions of these vectors 
independently represent single prosody features such as 
pitch variation or speaking rate. Disentangled prosody 
features allow for better prosody control via manipulat-
ing the latent vectors with different operations such as 
interpolation and scaling [77]. The two early papers, [76, 
77], can be regarded as the baseline for latent feature-
based approaches. The former study [76] introduces VAE 
within the VoiceLoop model [147], while the latter [77] 
incorporates VAE into Tacotron2 [4] as an end-to-end 
TTS model for expressive speech synthesis.

In the same direction of modeling the variation of the 
prosodic features in expressive speech, studies [109, 110] 
propose a hierarchical structure for the baseline vari-
ational autoencoder, known as Clockwork Hierarchical 
Variational AutoEncoder (CHiVE). Both the encoder and 
decoder in the CHiVE model have several layers to cap-
ture prosody at different levels based on the input text’s 
hierarchical structure. Accordingly, linguistic features are 

also used alongside acoustic features as input to the mod-
el’s encoder. The model’s layers are dynamically clocked 
at specific rates: sentence, words, syllables, and phones. 
The encoder hierarchy goes from syllables to the sentence 
level, while the decoder hierarchy is in the reversed order. 
The CHiVE-BERT model in [110], differs from the main 
model in [109] as it utilizes BERT [148] features for input 
text at the word-level. Since the features extracted by 
the BERT model incorporate both syntactic and seman-
tic information from a large language model, CHiVE-
BERT model is expected to have improved the prosody 
generation.

Other studies [24, 53] propose Vector-Quantized 
Variational Auto-Encoder (VQ-VAE) to achieve dis-
cretized latent prosody vectors. In vector quantization 
(VQ) [149], latent representations are mapped from the 
prosody latent space to a codebook of a limited num-
ber of prosody codes. Specifically, during training, the 
nearest neighbor lookup algorithm is applied to find the 
nearest codebook vector to the output of the reference 
encoder and used to condition TTS decoder. To further 
improve the quality of latent prosody vectors and conse-
quently the expressiveness of the generated speech, Diff-
Prosody[24] proposes a diffusion-based VQ-VAE model. 
In the proposed model a prosody generator that utilizes 
a denoising diffusion generative adversarial networks 
(DDGANs) [150] is trained to generate the prosody latent 
vectors based only on text and speaker information. At 
inference time, the prosody generator is used to produce 

Fig. 7 Baseline model (2) for unsupervised approaches: variational autoencoder (VAE) integrated to encoder-decoder TTS model. VAE learns latent 
space variables mean µ(x) and variance σ 2(x) and samples latent prosody vector(z) from the learned prosody space
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prosody vectors based on input text and with no need 
for an audio reference which improves both quality and 
speed of speech synthesis.

While most of the studies in this category follow the 
baseline model and use mel-spectrograms to represent 
the reference audio, other studies extract correlated pros-
ody features as input to the VAE. For instance, frame-
level F0, energy, and duration features are extracted 
from the reference speech as basic input for the hierar-
chical encoder of the CHiVE model [109]. These same 
features are also used as input for the VAE encoder in 
work [35], but at the phoneme level. In work [68], multi-
resolution VAEs are employed, each with acoustic and 
linguistic input vectors. The acoustic feature vectors for 
each encoder include 70 mel-cepstral coefficients, log F0 
value, a voiced/unvoiced value, and 35 mel-cepstral anal-
ysis aperiodicity measures.

4.3  Global Style Tokens
The Global Style Tokens (GST) approach for expressive 
synthesis was first introduced in [75]. The paper proposes 
a framework to learn various speaking styles (referred 
to as style tokens) in an unsupervised manner within 
an end-to-end TTS model. The proposed approach can 
be seen as a soft clustering method that learns soft style 
clusters for expressive styles in an unlabeled dataset. In 
detail, GST, as shown by Fig.  8, extends the approach 
introduced in [74] by passing the resulting style embed-
ding from the reference encoder to an attention unit, 
which functions as a similarity measure between the style 
embedding and a bank of randomly initialized tokens. 
During training, the model learns the style tokens and a 

set of weights, where each style embedding is generated 
via a weighted sum of the learned tokens. In fact, the 
obtained weights represent how each token contributes 
to the final style embedding. Therefore, each token will 
represent a single style or a single prosody-related fea-
ture, such as pitch, intensity, or speaking rate.

At inference time, a reference audio can be passed to 
the model to generate its corresponding style embedding 
via a weighted sum of the style tokens. Alternatively, each 
individual style token can be used as a style embedding. 
In addition, GSTs offer an enhanced control over the 
speaking style through various operations. These include 
manual weight refinement, token scaling with different 
values, or the ability to condition different parts of the 
input text with distinct style tokens.

The GST-TTS model can be further enhanced by mod-
eling different levels of prosody to improve both expres-
siveness and control over the generated speech. For 
instance, [46] proposes a fine-grained GST-TTS model 
where word-level GSTs are generated to capture local 
style variations (WSVs) through a prosody extractor. The 
WSV extractor consists of a reference encoder and a style 
token layer, as described in [75], along with an attention 
unit to produce the word-level style token

In [133] a hierarchical structure of multi-layer GSTs 
with residuals is proposed. The model employs three 
GST layers, each with 10 tokens, resulting in a better 
interpretation of the tokens of each level. Upon tokens 
analysis, it was found that the first-layer tokens learned 
speaker representations, while the second-layer tokens 
captured various speaking style features such as pause 
position, duration, and stress. The third-layer tokens, 

Fig. 8 Baseline model (3) for unsupervised approaches: Global Style Tokens (GSTs) integrated to encoder-decoder TTS model. Style token layer 
learns a single weight for each token and generates the style embedding from summation of all the tokens multiplied by their corresponding 
weights
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however, were able to generate higher-quality samples 
with more distinct and interpretable styles. Similarly, in 
[50], a multi-scale GST extractor is proposed to extract 
speaking style at different levels. This extractor extracts 
style embeddings from the reference mel-spectrogram 
using three style encoders at global, sentence, and sub 
word levels, and combines their outputs to form the 
multi-scale style embedding.

With only a small portion of the training dataset 
labeled with emotions, [26] proposes a semi-supervised 
GST model for generating emotional speech. The model 
applies a cross-entropy loss between the one-hot vectors 
representing the emotion labels and the weights of GSTs, 
in addition to the GST-TTS reconstruction loss. The 
semi-GST model is trained on a dataset in which only 5% 
of the samples are labeled with emotion classes, while the 
rest of the dataset is unlabeled. After training, each style 
token represents a specific emotion class from the train-
ing dataset and can be used to generate speech in the 
corresponding emotion.

Furthermore, in [92], a speech emotion recognition 
(SER) model is proposed with the GST-TTS to generate 
emotional speech while acquiring only a small labeled 
dataset for training. The paper formulates the training 
process as reinforcement learning (RL). In this frame-
work, the GST-TTS model is treated as the agent, and its 
parameters serve as the policy. The policy aims to predict 
the emotional acoustic features at each time step, where 
these features represent the actions. The pre-trained SER 
model then provides feedback on the predicted features 
through emotion recognition accuracy, which represents 
the reward. The policy gradient strategy is employed to 
perform backpropagation and optimize the TTS model 
to achieve the maximum reward.

In contrast, the Mellotron model [114] introduces 
a unique structure for the GSTs, enabling Mellotron 
to generate speech in various styles, including sing-
ing styles, based on pitch and duration information 
extracted from the reference audio. This is achieved by 
obtaining a set of explicit and latent variables from the 
reference audio. Explicit variables (text, speaker, and F0 
contour) capture explicit audio information, while latent 
variables (style tokens and attention maps) capture the 

latent characteristics of speech that are hard to extract 
explicitly.

4.4  Approaches based on in‑context learning
These is a group of recent TTS models that are trained 
on a large amounts of data using in-context learning 
strategy. During in-context learning (also called prompt 
engineering), the model is trained to predict missing data 
based its context. In other words, the model is trained 
with a list of input-output pairs formed in a way that rep-
resents the in-context learning task. After training, the 
model should be able to predict the output based on a 
given input.

For the TTS task, the provided style reference (referred 
to as prompt) is considered as part of the entire utter-
ance to be synthesized. The TTS model training task is 
to generate the rest of this utterance following the style 
of the provided prompt as shown by Fig. 9. By employing 
this training strategy, recent TTS models such as VALL-E 
[22], NaturalSpeech 2 [18], and Voicebox [25] are capable 
of producing zero-shot speech synthesis using only a sin-
gle acoustic prompt. Furthermore, these models demon-
strate the ability to replicate speech style/emotion from a 
provided prompt [18, 22] or reference [25] to the synthe-
sized speech.

In VALL-E [22], a language model is trained on tokens 
from Encodec [151], and the input text is used to condi-
tion the language model. Specifically, the Encodec model 
tokenizes audio frames into discrete latent vectors/codes, 
where each audio frame is encoded with eight codebooks. 
VALL-E employs two main models: the first one is an 
auto-regressive (AR) model that predicts the first code of 
each frame, and the second is non-auto-regressive (NAR) 
model that predicts the other seven codes of the frame.

Instead of discrete tokens used in VALL-E, Natural-
Speech 2 [18] represents speech as latent vectors from a 
neural audio codec with residual vector quantizers. The 
latent vectors are then predicted via a diffusion model, 
conditioned on input text, pitch from a pitch predictor, 
and input speech prompt.

Another example of in-context training is Voicebox [25] 
which is a versatile generative model for speech trained 
on a large amount of multilingual speech data. The model 

Fig. 9 Utilizing in-context learning for training speech synthesis models, adapted from [25]
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is trained on a text-guided speech infilling task, which 
gives it the flexibility to perform various speech tasks 
such as zero-shot TTS, noise removal, content editing, 
and diverse speech sampling. Voicebox is modeled as a 
non-autoregressive (NAR) flow-matching model with the 
ability to consider future context.

4.5  Other approaches
This category containes reviewed papers that propose 
individual techniques or methods which cannot be cate-
gorized under any of the previously mentioned unsuper-
vised approaches. For instance, in [121], a neural encoder 
is introduced to encode the residual error between the 
predictions of a trained average TTS model and the 
ground truth speech. The encoded error is then used as 
a style embedding that conditions the decoder of the TTS 
model to guide the synthesis process. Raitio and Seshadri 
[128] improves prosody modeling of FastSpeech2 model 
[6] with an additional variance adaptor for utterance-
wise prosody modeling.

As context information is strongly related to speech 
expressivity, [45] proposes using multiple self-attention 
layers in Tacotron2 [4] encoder to better capture the con-
text information in the input text. The outputs of these 
layers in the encoder are combined through either direct 
aggregation (concatenation) or weighted aggregation 
using a multi-head attention layer. Additionally, there are 
some papers that propose using only input text to obtain 
prosody-related representations/embeddings without 
any style references, and those are further discussed in 
Section 5.2.4.

5  Main challenges of ETTS models
In this section, we list and explain the most important 
challenges that face expressive TTS models and the main 
solutions that have been proposed in the literature to 
overcome these challenges. We then provide a summary 
of papers addressing each challenge in Table 5.

5.1  Irrelevant information leakage
One main problem in unsupervised approaches that 
rely on having a style reference or a prompt, is the leak-
age of irrelevant information, like speaker or text related 
information, into the generated style or prosody embed-
ding. This irrelevant information within the speech style 
can lead to degradation in the quality of the synthesized 
speech. As a result, many studies have investigated this 
problem, and several solutions have been proposed as 
outlined below.

5.1.1  Adversarial training
Adversarial training [90] is one of the widely used tech-
niques to confront the information leakage problem. 

Typically, a classifier is trained to distinguish the type 
of unwanted information (such as speaker or content 
information) that is leaking from the prosody reference 
audio into the generated prosody embedding. During the 
training process, the weights of the employed prosody 
encoder/extractor from the reference audio are modi-
fied with gradient inversion of the proposed classifier. In 
other words, the classifier penalizes the prosody encoder/
extractor for any undesired information in its output. A 
gradient reversal layer (GRL) is usually used to achieve 
the inversion of the classifier gradients.

Several studies utilize adversarial training to prevent 
the flow of either speaker or content-related information 
from the given reference audio to the resulting prosody 
embedding. For instance, the VAE-TTS model proposed 
in [47] learns phoneme-level 3-dimensional prosody 
codes. The VAE is conditioned on speaker and emotion 
embeddings, besides the tone sequence and mel-spectro-
gram from the reference audio. Adversarial training using 
a gradient reversal layer (GRL) is applied to disentan-
gle speaker and tone from the resulting prosody codes. 
Similarly, adversarial training is introduced to the style 
encoder of the cross-speaker emotion transfer model 
proposed in [19] to learn a speaker-independent style 
embedding, where the target speaker embedding is pro-
vided from a separate speaker encoder.

The STYLER model in [97] employs multiple style 
encoders to decompose the style reference into several 
components, including duration, pitch, speaker, energy, 
and noise. Both channel-wise and frame-wise bottleneck 
layers are added to all the style encoders to eliminate 
content-related information from the resulting embed-
dings. Furthermore, as noise is encoded individually 
by a separate encoder in the model, other encoders are 
constrained to exclude noise information by employing 
either domain adversarial training or residual decoding.

In [111], prosody is modeled at the phone-level and 
utterance-level by two separate encoders. The first 
encoder consists of two sub-encoders: a style encoder 
and a content encoder, besides two supporting classifiers. 
The first classifier predicts phone identity based on the 
content embedding, while the other classifier makes the 
same prediction but based on the style embedding. The 
content encoder is trained via collaborative training with 
the guidance of the first classifier, while adversarial train-
ing is used to train the style encoder, utilizing the second 
classifier.

On the other hand, [102] proposes adversarial train-
ing for the style reference by inverting the gradient of 
an automatic speech recognition (ASR) model. The 
proposed model introduces a shared layer between an 
ASR and a reference encoder-based model. Specifi-
cally, a single BiLSTM layer from the listener module of 
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a pre-trained ASR model serves as the prior layer to the 
reference encoder. The process starts by passing the refer-
ence Mel-spectrogram to the shared layer to produce the 
shared embedding as input to both the reference encoder 
and the ASR model. A gradient reversal layer (GRL) is 
employed by the ASR model to reverse its gradient on the 
shared layer. Accordingly, the reference encoder parame-
ters are modified so that the ASR model fails to recognize 
the shared embedding, and thus content leakage to the 
style embedding from the reference encoder is reduced.

5.1.2  Prosody classifiers
This is a supporting approach used by some studies to 
produce more discriminative prosody embeddings by 
passing them to a prosody classifier. This method can be 
applied when the training data is labeled with emotion or 
style labels. In the two consecutive studies [32, 34] from 
the same research group, an auxiliary reference encoder 
is proposed and located after the decoder of the baseline 
TTS model [74]. The two reference encoders in the model 
are followed by emotion classifiers to further enhance 
the discriminative nature of their resulting embeddings. 
However, the emotion embedding that is passed to the 
TTS model is the output of an intermediate hidden layer 
of the classifiers. In addition to the classification loss, 
an additional style loss is also applied between the two 
emotion embeddings from the two employed emotion 
classifiers.

In [36], alongside the text encoder, two encoders are 
introduced to generate embeddings for speaker and emo-
tion from a reference audio. To further disentangle emo-
tion, speaker, and text information, both speaker and 
emotion encoders are supported with a classifier to pre-
dict speaker and emotion labels, respectively. Similarly, 
in paper [39], a model with two encoders and two clas-
sifiers is proposed to produce disentangled embeddings 
for speakers and emotions from a reference audio. How-
ever, the paper claims that some emotional information is 
lost during the process of disentangling speaker identity 
from the emotion embedding. As a result, an ASR model 
is introduced to compensate for the missing emotional 
information. The emotion embedding is incorporated 
within a pre-trained ASR model through a global context 
(GC) block. This block extracts global emotional features 
from the ASR model’s intermediate features (AIF). Sub-
sequently, a prosody compensation encoder is utilized to 
generate emotion compensation information from the 
output of the AIF layer, which is then added to the emo-
tion encoder output.

5.1.3  Information bottleneck
The information bottleneck is a technique used to con-
trol information flow via a single layer/network. It helps 

prevent information leakage as it projects input into a 
lower dimension so that there is not enough capacity 
to model additional information and only important 
information is passed through it. In other words, the 
bottleneck can be seen as a down-sampling and up-
sampling filter that restricts its output and generates a 
pure style embedding. Several prosody-reference based 
approaches, as in [86, 93, 97, 101, 130], have employed 
this technique to prevent the flow of speaker or con-
tent-related information from the reference audio to 
the prosody embedding.

In [93], a bottleneck layer named sieve layer is intro-
duced to the style encoder in GST-TTS to generate pure 
style embedding. Similarly, in the multiple style encoders 
model STYLER [97], each encoder involves a channel-
wise bottleneck block of two bidirectional-LSTM layers 
to eliminate content information from encoders’ out-
put. Another example is the cross-speaker-style trans-
fer Transformer-TTS model proposed in [86] with both 
speaker and style embeddings as input to the model 
encoder. The speaker-style-combined output from the 
encoder is then passed to a prosody bottleneck sub-net-
work, which produces a prosody embedding that involves 
only prosody-related features. The proposed bottleneck 
sub-network consists of two CNN layers, a squeeze-
and-excitation (SE) block [152], and a linear layer. The 
encoder output is then concatenated with the resulting 
prosody embedding and used as input to the decoder.

The Copycat TTS model [130] is a prosody trans-
fer model via VAE. The model applies three techniques 
to disentangle the source speaker information from the 
prosody embedding. One of these techniques is to use a 
temporal bottleneck encoder [153] within the reference 
encoder of the model. The prosody embedding that is 
sampled from the latent space is passed to the bottleneck 
to reduce speaker identity-related information in the 
prosody embedding before it flows to the model decoder. 
Similarly, the model proposed in [101] produces a style 
embedding with less irrelevant style information by add-
ing a variational information bottleneck (VIB) [154] layer 
to the reference encoder. The idea behind this layer is to 
introduce a complexity constraint on mutual information 
(MI) between the reference encoder input and output so 
that it only flows out style-related information.

5.1.4  Instance normalization
Batch normalization (BN), first introduced in [155], is 
utilized in deep neural networks to accelerate the train-
ing process and increase its stability. Essentially, a batch 
normalization layer is added before each layer in deep 
neural networks to adjust the means and variances of the 
layer inputs, as illustrated by Eq. (1):
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where γ , β are affine parameters learned from data and 
µ , σ are the mean and standard deviation which are cal-
culated for each feature channel across the batch size. 
Instance normalization (IN) also follows equation (1); 
however, it calculates means and variances across spa-
tial dimensions independently for each channel and each 
sample (instance). In the field of computer vision, styliza-
tion approach is significantly improved by replacing (BN) 
layers with (IN) layers [156]. Consequently, researchers 
in the expressive speech field have started to apply IN 
to extract better prosody representations. For example, 
an instance normalization (IN) layer is used at the refer-
ence encoder in [130], at the prosody extractor in [93], 
and at the style encoder in [96] to remove style/prosody 
irrelevant features (such as speaker identity features) and 
enhance the learned style/prosody embedding.

5.1.5  Mutual information minimization
For a pair of random variables, mutual information (MI) 
is defined as the information obtained on one random 
variable by observing the other. Specifically, if X and Y 
are two variables, then MI(X; Y) shown by Venn diagram 
in Fig. 10, can be seen as the KL-divergence between the 
joint distribution (PXY ) and the product of the marginals 
(PX ,PY ) as in equation (2). If the two random variables 
X and Y represent linguistic and style vectors, applying 
MI minimization between these two vectors helps to pro-
duce style vectors with less information from the content 
vector.

For example, in [137], the Mutual Information Neu-
ral Estimation algorithm (MINE) [157] is employed to 

(1)IN (x) = γ
x − µ(x)

σ (x)
+ β

(2)MI(X;Y ) = DLKL(P(X ,Y )�PX ⊗ PY )

estimate the mutual information between the content 
and style vectors. The algorithm uses a neural network 
that is trained to maximize the lower bound of the 
mutual information between the style and content vec-
tors. Simultaneously, the TTS model aims to minimize 
the reconstruction loss, making the overall problem a 
max-min problem. Alternatively, in [21], the CLUB 
method [158], which computes an upper bound as the 
MI estimator, is used to prevent the leakage of speaker 
and content information into the style embedding.

A new approach is proposed in [117] for MI estima-
tion and minimization to reduce content/speaker infor-
mation transfer to the style embedding in a VAE based 
approach. Typically, the model needs to estimate MI 
between latent style embeddings and speaker/content 
embeddings. To avoid the exponentially high statistical 
variance of the finite-sampling MI estimator, the paper 
suggests using a new algorithm for information diver-
gence named Rényi divergence. Two variations from 
the Rényi divergence family are proposed, including 
minimizing the Hellinger distance and minimizing the 
sum of Rényi divergences.

5.1.6  Wav2Vec features
Wav2Vec [142] model converts speech waveform into 
context-dependent vectors/features. The model is 
trained via self-supervised or in-context training algo-
rithms which are explained in Section  4.4. Features 
generated by wav2vec and similar models such as 
HuBERT [159] provide better representations of speech 
and its lexical and non-lexical information. Therefore, 
these models are utilized nowadays in different speech 
processing tasks such as speech recognition, synthesis, 
and downstream emotion detection.

Some studies such as [23, 120] use Wav2vec 2.0 as 
a feature extractor to provide input to the reference 
encoder instead of spectrum features or raw audio 
waveform. Figure  11 illustrates the framework of the 
wav2vec technique and how it is utilized as a feature 
extractor with TTS models. The wav2vec model con-
verts the continuous audio features into quantized 
finite set of discrete representations called tokens. This 
is done using a quantization module that maps the 
continuous feature vectors into a discrete set of tokens 
from a learned codebook. As those tokens are more 
abstract, they reduce the complexity of the features by 
retaining important features while filtering out all the 
irrelevant information. Because of that abstraction, it is 
harder to reconstruct audio from the wav2vec features, 
which means leakage of linguistic content into feature 
vectors is significantly lower compared to other fea-
tures such as MFCCs.

Fig. 10 Venn diagram of two random variables X and Y where P(X) 
and P(Y) represent their entropies, P(X|Y) is the conditional entropy 
of X given Y and P(Y|X) is the conditional entropy of Y given X, H(X,Y) 
is the joint entropy of X and Y and MI(X,Y) is their mutual information
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5.1.7  Orthogonality loss
Studies [34, 39] propose a model with two separate 
encoders to encode speaker and emotion information 
through speaker and emotion classification loss, along 
with gradient inversion of the emotion classification loss 
in the speaker encoder. Additionally, to disentangle the 
source speaker information from the emotion embed-
ding, the emotion embedding is made orthogonal to the 
speaker embedding with an orthogonality loss shown 
in equation (3). An ablation study in [34] showed that 
applying an orthogonality constraint helped the encoders 
learn both speaker-irrelevant emotion embedding and 
emotion-irrelevant speaker embedding.

where ‖.‖F is the Frobenius norm, ei is the emotion 
embedding and si is the speaker embedding.

5.2  Inference without reference audio
A main drawback of the unsupervised approaches (Sec-
tion  4) is that they require a reference audio for the 

(3)Lorth =

n
∑

i=1

�Si − ei�
2
F

desired prosody or style of the generated speech. How-
ever, prosody references are not always available for the 
desired speaker, style, or text. Besides, using prosody ref-
erence introduces the leakage problem as discussed in 
Section  5.1. As a result, different techniques have been 
proposed that enable unsupervised expressive speech 
synthesis without prosody references. Some techniques 
utilize the reference audio at training phase while at infer-
ence phase speech synthesis can be done with or with-
out a reference audio. Other techniques depend on input 
text only to generate prosody embedding at both training 
and inference phases. In the following three sections, we 
will describe techniques for inference without reference 
audio applied with each of the three main unsupervised 
ETTS approaches. In Section 5.2.4, we will discuss some 
ETTS approaches that are based on text only. Then in 
Table 4, we summarize main approaches that are used to 
extract text-based features with related papers links.

5.2.1  Direct reference encoding without reference audio
In several studies, prosody predictors are trained jointly 
with the proposed reference encoder to bypass the 
requirement for reference audio at inference time. The 
prosody predictors are trained to predict either the 

Fig. 11 The general framework of wav2vec technique and its utilization as a feature extractor for generating speech representations as input 
to the TTS model
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prosody embeddings generated by reference encoders 
[50, 96, 111, 116], or the acoustic features used as input 
to reference encoders [37, 63]. As input to these prosody 
predictors, most studies utilize the phoneme embeddings 
[37, 63, 96, 111].

Alternatively, features extracted from input text can 
also be used as input for prosody predictors. In [50], the 
prosody predictor has a hierarchical structure that uti-
lizes contextual information at both the sentence and par-
agraph levels to predict prosody embeddings. The input 
features for this predictor are in the form of 768-dimen-
sional phrase embeddings extracted by the pre-trained 
language model XLNet [160]. Sentence embeddings are 
initially predicted from the input features using an atten-
tion network. Then a second attention network is used to 
predict the paragraph-level prosody embedding.

Furthermore, in [33], emotion is modelled at three 
levels: global, utterance, and syllable (local). The model 
employs three prosody encoders, each with a predictor 
trained to predict the corresponding prosody embedding 
based on input text. The global-level predictor functions 
as an emotion classifier, where the output of its final soft-
max layer serves as the global emotion embedding. The 
emotion label’s embedding is used as the ground truth 

for this emotion classifier. Both the utterance and local 
prosody encoders receive level-aligned mel-spectrograms 
as input and produce utterance prosody embedding and 
local prosody strength embedding, respectively. Similarly, 
two prosody predictors are used to predict utterance and 
local-level embeddings based on the output from the text 
encoder of the TTS model.

In contrast, the prosody predictor proposed in paper 
[44] learns multiple mixed Gaussian distributions model 
(GMM) for prosody representations. Therefore, the final 
outputs of the prosody predictor involve three param-
eters: mean, variance, and weight of multiple mixed 
Gaussian distributions from which prosody represen-
tations can be sampled at inference time. As input, the 
predictor receives two phoneme-level sequences includ-
ing embeddings from the text encoder and embeddings 
from a pre-trained language model. Similar work is pro-
posed in [95] where only phoneme embeddings are used 
as input to the prosody predictor. GMM in both studies is 
modeled via the mixture density network [161].

5.2.2  VAE‑based approaches without reference audio
Sampling from the latent space without reference audio 
results in less controllability of style. In addition, it can 

Table 4 Applied models and techniques in literature for extracting features from textual input of the TTS model with papers’ links in 
which they are applied. Extracted features are utilized in the ETTS model for three purposes: inference in reference-based ETTS models 
when lacking reference audio, inputs to ETTS models trained to be based on text only or as additional features to the ETTS model

Model/method Utilized for:

Inference without reference audio ETTS based on text only Additional 
ETTS 
features

BERT language model [35, 44, 46, 50, 59, 73, 129] [29, 40, 54] [62, 87, 100, 
110, 127, 
131, 136, 
138]

ELECTRA language model [125]

ELMo language model [83]

RoBERTa language model [21, 70]

XLNet language model [17, 50]

(GPT)-3 language model [64]

Parsing trees [129]

Prosody boundaries in text

Constituency trees [131]

Sentiment analysis model [30]

Stanford Sentiment Parser [135]

Syntax-related features (such as POS: part 
of speech)

[127]

Word emotion lexicon [40]

Term Frequency-Inverse Document Frequency 
(TF-IDF) (TF-IDF)

[99]

Character/phoneme embedding [20, 33, 37, 44, 47, 48, 63, 71, 72, 91, 94–96, 103, 111]
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also introduce naturalness degradation and inappropri-
ate contextual prosody with regard to the input text [68, 
129]. Therefore, to avoid sampling the latent space with-
out a reference, authors of [131] proposed utilizing the 
same prosody embedding of the most similar training 
sentence to input sentence at inference time. The selec-
tion process is based on measuring cosine similarity 
between sentences’ linguistic features. Three methods are 
proposed for extracting sentence linguistic information 
including (1) calculating the syntactic distance between 
words in the sentence using constituency trees [162], (2) 
averaging the contextual word embeddings (CWE) for 
the words in the sentence using BERT, and (3) combining 
the previous two methods.

Other studies approach the problem in alternative 
ways, seeking to enhance the sampling process either 
through refining the baseline model structure or by 
incorporating text-based components into the baseline. 
Regarding the improvement of the baseline structure, 
study [68] suggests the combination of multiple vari-
ational autoencoders to generate latent variables at three 
distinct levels: utterance-level, phrase-level, and word-
level. Furthermore, they apply a conditional prior (CP) 
to learn the latent space distribution based on the input 
text embedding. To account for dependencies within the 
input text, they employ Autoregressive (AR) latent con-
verters to transform latent variables from coarser to finer 
levels.

An alternative approach is proposed in [126] by 
replacing the conventional VAE encoder with a residual 
encoder that leverages phoneme embedding and a set of 
learnable free parameters as inputs. With this modified 
structure, the model learns a latent distribution that rep-
resents various prosody styles for a specific sentence (i.e., 
the input text), in addition to capturing potential global 
biases within the applied dataset (represented by the free 
parameters). At the same time, with this modification, 
the problem of speaker and content leakage into prosody 
embedding is addressed.

Various studies propose training a predictor for the 
latent prosody vectors based on features extracted from 
the input text [35, 47]. The proposed model in [47] gen-
erates fine-grained prosody latent codes of three dimen-
sions at phoneme-level. These prosody codes are then 
used to guide the training process of a prosody predictor 
that receives phoneme embeddings as input, in addition 
to emotion and speaker embeddings as sentence-level 
conditions. In [35], the predicted mean values of the 
latent space distribution are employed as prosody codes. 
Similarly, a prosody predictor is trained to predict these 
prosody codes using two text-based inputs, including 
sentence-level embeddings from a pre-trained BERT 
model and contextual information considering BERT 

embeddings of a few of surrounding k sentences given 
the current sentence.

Alternatively, study [129] proposed training a sam-
pler, i.e., Gaussian parameters, to sample the latent space 
using features extracted from the input text. Three dif-
ferent structures are investigated for the sampler based 
on the input features it receives. The applied text-based 
features include BERT representations of a sentence 
(semantic information), the parsing tree of the sentence 
(syntactic information) after it is fed to a graph attention 
network, and the concatenation of outputs from the pre-
vious two samplers.

5.2.3  GST‑based approaches without reference audio
There are GST-TTS models that utilize text-based fea-
tures from pre-trained language models such as BERT 
to guide expressive speech synthesis at inference time 
without a reference. In [59], the training dataset is labeled 
with short phrases that describe the style of the utter-
ance and are known as style tags. A pre-trained Sentence 
BERT (SBERT) model is used to produce embeddings for 
each style tag as input to a style tag encoder. The style 
embedding from the GST-TTS model is used as ground 
truth for the style tag encoder. During inference, either 
a reference audio or a style tag can be used to generate 
speech.

Alternatively, pre-trained language models are used to 
extract features from input text and train a prosody pre-
dictor to predict the style embedding based on these text-
based features [17, 46, 50, 73, 91, 94]. In [94], the baseline 
model [75] is extended with a prosody predictor module 
that extracts time-aggregated features from the output 
of the baseline text encoder. Two pathways are suggested 
for the targets of the predictor output: either using the 
weights of the GSTs or the final style embedding. Simi-
larly, in [73], two prosody predictors are investigated, 
using different inputs from a pre-trained multi-language 
BERT model. While the first predictor utilizes BERT 
embeddings for the sub-word sequence of input text, the 
other predictor employs only the CLS token from the 
sentence-level information extracted by the BERT model. 
Both inputs provide rich information for the predictors 
to synthesize prosodic speech based solely on input text.

The multi-scale GST-TTS proposed in [50] which 
employs three style encoders, also introduces three style 
predictors that employ hierarchical context encoders 
(HCE). The input to the first predictor is the BERT sub 
word-level semantic embedding sequence. The atten-
tion units in the HCE, however, are used to aggregate 
the resulting context embedding sequence from lower 
level as input to higher-level predictors. Additionally, the 
output of higher-level predictor is used to condition the 
lower-level predictor. BERT embeddings are also used in 
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[46] but at word-level and are passed as input to the pro-
posed prosody predictor. The style embedding which is 
generated via word-level GSTs is used to guide the pros-
ody predictor during model training.

A Context-aware prosody predictor is proposed in [17] 
which considers both text-side context information and 
speech-side style information from preceding speech. 
This predictor comprises two hierarchical components: 
a sentence encoder and a fusion context encoder. The 
context-aware input to the predictor includes word-level 
embeddings from XLNet [160] for each word in the cur-
rent sentence, as well as the N preceding and following 
sentences. The sentence encoder focuses on learning 
low-level word meanings within each sentence, while 
the fusion context encoder captures high-level contex-
tual semantics between the sentences. Additionally, style 
embeddings from previous sentences are integrated into 
the fusion context encoder input to account for speech-
side information.

In [91] Speech emotion recognition model (SER) is 
employed as a style descriptor to learn the implicit con-
nection between style features and input text. Deep 
style features for both synthesized speech and reference 
speech are obtained from a small intermediate fully con-
nected layer of a pre-trained SER model during training. 
The extracted style features are compared where an addi-
tional loss is introduced to the GST-TTS model loss. At 
inference time only text is used to synthesize expressive 
speech.

5.2.4  ETTS approaches based only on text
This category involves approaches that depend solely 
on input text to obtain prosody-related representations/
embeddings during TTS model training. Several features 
related to speech prosody have been proposed by vari-
ous studies for extraction from input text and subsequent 
transmission to a DNN-based module to generate pros-
ody representations. For instance, the features extracted 
by the pre-trained language models can capture both 
semantic and syntactic relationships with the input text, 
making them effective representations for prosody. In 
[83], input text word-level embeddings are extracted by 
the Embeddings from Language Models (ELMo) model 
[163] and used to generate context-related embed-
dings via a context encoder. Similarly, in [29], BERT is 
employed to extract embeddings for utterance sentences 
and pass them to a specific context-encoder to aggregate 
these embeddings and form a final context vector.

Other studies, such as [30, 40, 54], utilize graph repre-
sentations of input text, which can also reflect semantic 
and syntactic information about the given text. In [30], 
the graphical representations of prosody boundaries 
in Chinese text are passed to a graph encoder based on 

Graph Neural Networks (GNN) to generate prosodic 
information for the input text. The prosody boundaries 
of the Chinese language can be manually annotated or 
predicted using a pre-trained model. In contrast, [54] 
combines BERT-extracted features for input text with 
its graph dependency tree to produce word-level pros-
ody representations. Specifically, the input text is passed 
through both BERT and a dependency parsing model to 
extract the dependency tree for word-level BERT embed-
dings. A Relational Gated Graph Network (RGGN) is 
used to convert this dependency tree into word-level 
semantic representations upon which the decoder of the 
TTS model is conditioned.

Different text-based features have been extracted from 
input text to obtain prosody (style) embeddings in [40]. 
The paper utilizes an emotion lexicon to extract word-
level emotion features, including VAD (valence, arousal, 
dominance) and BE5 (joy, anger, sadness, fear, disgust). 
Additionally, the [CLS] embedding by BERT for each 
utterance is also extracted. The obtained features are then 
passed to a style encoder to produce a style embedding.

Other models under this category train a prosody 
encoder/predictor jointly with an autoregressive TTS 
model such as Tacotron 2, to encode some prosody 
related features utilizing text-based features. The trained 
encoder is then used at inference time to encode pros-
ody-related features based on input text to the TTS 
model. The text-based input to these prosody encoders 
in most of the studies is the text’s character/phoneme 
embeddings [20, 48, 71, 72, 103], while some studies 
use features extracted from the input text [64, 125]. For 
instance, [125] employs four ToBI (Tones and Break Indi-
ces) features as word-level prosody tags that are com-
bined with the phoneme embedding as input to the TTS 
model. A ToBI predictor is jointly trained to predict four 
ToBI features based on grammatical and semantic infor-
mation extracted from the input text using a self-super-
vised language representation model ELECTRA [164].

In addition to the previously mentioned features, sev-
eral other prosodic features are also proposed as the 
output of the prosody predictors in other studies. For 
example, the prosody predictor in [103] predicts a set of 
utterance-wise acoustic features, including log-pitch, log-
pitch range, log-phone duration, log-energy, and spec-
tral tilt. In [48], the proposed pitch predictor outputs a 
continuous pitch representation, which is converted into 
discrete values using Vector Quantization (VQ) [149]. 
Furthermore, studies [20, 71] propose predicting the 
three prosody-related features, i.e., F0, energy, and dura-
tion, either by a single acoustic features predictor (AFP) 
[71] or via three separated predictors [20].

Another type of emotion embedding is sentiment fea-
ture embedding, which is utilized to produce expressive 
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speech by extracting sentiment information from the 
input text. This is demonstrated in work [135], where 
the Stanford Sentiment Parser is used to generate vec-
tor embeddings or sentiment probabilities based on the 
tree structure of the sentence. To synthesize expressive 
speech, different combinations of probabilities and vec-
tor embeddings (for individual words or word-context) 
are added to the linguistic features as inputs to the TTS 
model.

5.3  Prosody controllability
Text-to-speech is a one-to-many mapping problem, i.e., 
for one piece of text there could be many valid prosody 
patterns because of speaker-specific variations. Accord-
ingly, providing a kind of controllability over prosody-
related features in synthesized speech is essential for 
generating expressive speech with different variations. 
However, it’s not always easy to mark-up prosody or even 
to define boundaries between prosody events, i.e., dura-
tion boundaries can vary depending on segmentation, 
pitch contour prediction is error-prone, and prosody fea-
tures may not always correlate well with what listeners 
perceive.

Several studies in literature have addressed the control-
lability issue in terms of selecting an emotion/style class 
or intensity level and adjusting prosody-related features 
at different speech levels. In this section, we discuss stud-
ies considering prosody controllability.

5.3.1  Modeling‑specific prosody styles
This group of studies provides individual representa-
tions of expressive styles/emotions, enabling the control 
of prosody in synthesized speech by offering the ability 
to select from available representations or adjust their 
values. In some studies [55, 70, 116], style is modeled at 
a single speech/text level, while in other studies [68, 79, 
133] a multi-level or hierarchical model of expressive 
styles is used to allow for a better capture of prosody var-
iation in expressive speech.

In single-level prosody modeling approaches, [55] is 
one of the early studies that extends a baseline with fine-
grained control over the speaking style/prosody of syn-
thesized speech. The proposed modification involves 
adding an embedding network with temporal structure 
to either the speech-side or text-side of the TTS model. 
Accordingly, the resulting prosody embedding is of vari-
able length, and it is used to condition input to either 
encoder or decoder based on the position of the embed-
ding network. Speech-side prosody embedding provides 
adjustment of prosody at frame-level, while text-side 
prosody embedding enables phoneme-level prosody 
control.

Single-level prosody embeddings can be converted 
into discrete embeddings as in [70, 116]. Discrete pros-
ody representations are easier to control and analyze 
and provide a better interpretation of prosodic styles. 
In [116], a word-level prosody embedding is proposed 
based on decision trees and a GMM. A word-level refer-
ence encoder is first used to obtain word-level prosody 
embedding from reference audio. A binary decision tree 
is employed to cluster embeddings with their identities 
based on their phonetic information. Prosody embed-
dings of words in each leaf node will differ only in their 
prosodies. Then prosody embeddings of each leaf can 
be clustered via a GMM model where clusters represent 
prosody tags. If the applied GMM consists of five com-
ponents and a tree of ten leaf nodes, a set of 50 prosody 
tags is produced. At inference time, prosody tags can 
be selected manually or via a prosody predictor that is 
trained to select appropriate prosody tags based on input 
text.

In [70], an audiobook speech synthesis model is pro-
posed. The model uses a character-acting-style extrac-
tion module based on ResCNN [165] to extract different 
character acting styles from the input speech. Discrete 
character-level styles are obtained via vector quantization 
(VQ) [149], which maps them to a codebook, limiting the 
number of styles. At inference, the discrete character-act-
ing-styles are predicted via a style predictor. The charac-
ter-level style predictor uses both character embeddings 
from Skip-Gram [166] and text-based features from RoB-
ERTa [167] as input.

Regarding multi-level prosody modeling, some stud-
ies propose enhancing prosody control in the baseline 
models [74, 75, 77] by modifying their single-level pros-
ody modeling to multiple levels. For instance, [133] pro-
poses a hierarchical structure of [75] with multiple GST 
layers. Three GST layers are employed in the proposed 
model, each consisting of 10 tokens, which were found 
to yield better token interpretation. Tokens of the first 
and second layers were found to learn different speak-
ers and styles, but these representations were not easily 
interpreted. Interestingly, the tokens in the third layer 
were able to generate higher quality samples with more 
distinct and interpretable styles. Specifically, third-layer 
styles exhibit clear differences in their features, includ-
ing pitch, stress, speaking rate, start offset, rhythm, pause 
position, and duration.

Model in [77] is further extended in [68] with three 
VAEs to generate three different levels (utterance, phrase, 
and word) of latent variables with varying time resolu-
tions. Acoustic features and linguistic features are passed 
as input to the three VAEs. Initially, a conditional prior 
(CP) is applied to learn a distribution for sampling utter-
ance-level latent variables based on linguistic features 
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from the input text. The generated latent variables are 
passed to other levels via auto-regressive (AR) latent 
converters that convert latent variables from coarser-
level to finer-level with input text condition. In fact, the 
utterance-level latent variables can be used to control the 
generated speech styles, regardless of latent variables of 
other levels, as they are predicted based on the utterance-
level latent variables.

The Controllable Expressive Speech Synthesis (ConEx) 
model in [79] proposes modeling prosody at two levels, 
utterance-level (global) and phone-level (local), using 
reference encoders [74]. However, the global prosody 
embedding is used to condition the local prosody embed-
ding, resulting in an integrated prosody embedding. 
The local embeddings are 3D vectors that are converted 
into discrete local prosody embeddings (codes) via vec-
tor quantization (VQ) [149]. At inference time, the 
integrated prosody embedding is predicted by an auto-
regressive (AR) prior model trained to predict categori-
cal distributions for each of the discrete codes utilizing 
global prosody embedding and the phoneme embed-
ding as inputs. While global prosody embedding can be 
obtained from training samples or from an audio refer-
ence, local prosody embeddings for a given global pros-
ody embedding are achieved via the AR prior model. 
Fine-grained prosody control can be achieved by select-
ing a specific phoneme to start adjusting prosody from. 
The AR prior model will first generate the top k pros-
ody options for this phoneme. Then, the local prosody 
sequence will be generated autoregressively for each of 
the first top k options by the AR prior model.

5.3.2  Modeling‑specific prosody features
This group of studies provides individual representations 
of prosody-related features. Control over prosody of the 
synthesized speech is provided via selecting or adjust-
ing a specific representation of a specific prosody-related 
feature. Some studies in this direction model prosody 
features at the global or utterance-level [97, 128], while 
other studies propose modeling at fine-grained lev-
els [48, 63, 71, 122, 138], such as phoneme, syllable, or 
word-level.

The STYLER model [97], for example, employs multi-
ple style encoders to factor speech style into several com-
ponents, including duration, pitch, speaker, energy, and 
noise. This structure enables STYLER to generate con-
trollable expressive speech by adjusting each of the indi-
vidually modeled features. Furthermore, with the explicit 
noise encoding, other encoders can be constrained to 
exclude noise information as a style factor, and thus the 
model can generate clean speech even with noisy refer-
ences. Adjusting the style factors, various styles of speech 
can be generated from STYLER.

Adjusting several features at fine-grained levels can 
be a difficult task. For example, FastSpeech2 [6] pro-
vides fine-grained control over pitch range, duration, 
energy, which are modeled at the phone-level (phone-
wise), and it is not easy to adjust these features to 
achieve a specific prosodic output. Raitio and Seshadri 
[128] improves FastSpeech2 with an utterance-wise 
(coarse-grained) prosody model using an additional 
variance adaptor. That second variance adaptor is the 
same as the original one, but it models five features at 
the utterance-level: pitch, pitch range, duration, energy, 
and spectral tilt. These features are then concatenated 
with the corresponding output of the first variance 
adaptor. Such utterance-wise prosody model enables 
easier control of prosody while still allowing modifica-
tion at the phone-level. To control high-level prosody, 
a bias is added to the corresponding utterance-wise 
prosody predictions. A phone-level prosody control is 
achieved by directly modifying the phone-wise features.

Fine-grained control over a specific prosody-feature 
can also be required specially for strong speaking styles. 
To that end, in [71], a predictor is proposed to predict 
F0, energy, and duration features at the phoneme-level. 
During inference, the predicted features are generated 
based on the input text alone; however, they can also be 
provided externally and modified as desired.

Furthermore, two prosody modeling levels are pro-
posed in [63]: the local level (word-level) and global 
level (utterance-wise). The global prosody embedding is 
the emotion embedding obtained by a reference-based 
encoder. The local prosody embedding is obtained from 
a predictor of the F0 features at the word-level with 
global prosody embedding and the phoneme embed-
ding as inputs. Both embeddings are then passed to a 
multi-style encoder to form the final multi-style pros-
ody embedding. Therefore, modifying the predicted F0 
values can provide control of prosody at the utterance, 
word, and phoneme levels.

More flexibility in controlling the F0 feature is pro-
vided in the controllable deep auto-regressive model 
(C-DAR) model [138] which allows for F0 contour 
adjustment by the user. To achieve this goal, three strat-
egies are used: 1) context awareness by conditioning 
the model on the preceding and following speech dur-
ing training, 2) conditioning the model on some ran-
dom segments of ground truth F0, and 3) predicting 
F0 values in reverse order. Additionally, several text-
based features are used as input to the model, includ-
ing word embeddings derived from BERT, V/UV label, 
one-hot vector for the nearby punctuation, and pho-
neme encodings. At inference, F0 values specified by 
the user are used as alternatives for the ground truth F0 
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segments, and the model predicts the rest of the utter-
ance’s F0 contour through context awareness.

Discrete fine-grained representations for prosody fea-
tures as in [48, 122] are also useful to limit the number 
of the obtained representations. Both studies [48, 122] 
utilize VQ [149] to map each prosody embedding to the 
closest discrete representation from a predefined code-
book. In [48], a pitch predictor is used to predict charac-
ter-level continuous pitch representation using character 
embeddings from the text encoder as input. Zhang et al. 
[122], however, produces syllable-level prosody embed-
dings from a reference encoder that takes F0, intensity, 
and duration features from reference audio as input. The 
resulting prosody embeddings are then mapped to a pre-
defined codebook to extractb discrete prosody codes. 
Resulting prosody codes in [48] represent the pitch and 
other suprasegmental information that can be adjusted 
via a specific bias value to generate speech with differ-
ent pitch accents. The codes in [122], can be interpreted 
as representing some prosody features such as pitch and 
duration. The prosody variation at the syllable-level can 
be manually controlled by assigning each syllable the 
desired prosody code from the codebook.

In [125], ToBI features, which involve a set of con-
ventions used for transcribing and annotating speech 
prosody, are used. The applied ToBI features are four 
word-level tags: pitch accents, boundary tones, phrase 
accents, and break indices. The extracted ToBI tags are 
used as input to TTS model. Simultaneously, a ToBI pre-
dictor is trained to predict these prosody tags based on 
grammatical and semantic information extracted from 
the input text using a self-supervised language model. 
The resulting model had the ability to control the stress, 
intonation, and pause of the generated speech to sound 
natural, utilizing only ToBI tags from the text-based 
predictor.

5.3.3  Modeling prosody strength
This group of studies focus on regulating the strength 
of emotion or prosody. For instance, [61] utilizes the 
distance between emotion embeddings and the neutral 
emotion embeddings to identify scalar values for emotion 
intensity. It proposes a phoneme-level emotion embed-
ding and a fine-grained emotion intensity. The emo-
tion embedding is first obtained via a reference encoder. 
The emotion intensity is then generated by an intensity 
extractor that takes the emotion embedding as input. The 
intensity extractor produces intensity as a scalar value 
based on the distance between the emotion embedding 
and the centroid of a pre-defined cluster for neutral emo-
tion embeddings. The resulting emotion intensity values 
are quantized into pseudo-labels that serve as the index 
for an intensity embedding table.

Another method for learning emotion strength values 
in an unsupervised manner is by using ranking functions. 
Studies [27, 31, 33, 64] utilize a ranking function-based 
method named relative attributes [89] for this purpose. In 
[33], prosody is modeled at three levels: global-level rep-
resentation by emotion embedding, utterance-level rep-
resented by prosody embedding from a reference-based 
encoder, and the local-level represented by emotion 
strength. The study trains an emotion strength extractor 
at the syllable-level based on input speech utilizing the 
ranking function. Simultaneously, a predictor of emo-
tion strength is trained based on features extracted from 
input text via BERT model. Besides changing emotion 
label and emotion reference audio, the model provides 
manual control of the emotion strength values in the syn-
thesized speech.

Alternatively, the reference encoder in [31] functions 
as a ranking function to learn a phoneme-level emotion 
strength (descriptor) sequence. The proposed ranking 
function [89] receives its input from fragments of target 
reference audio obtained via a forced alignment model to 
phoneme boundaries. The OpenSMILE [139] tool is then 
used to extract 384-dimensional emotion-related features 
from these reference speech fragments as input to the 
ranking function. Similarly, the proposed ranking func-
tion in [27] takes a set of acoustic features extracted from 
the input speech via OpenSMILE tool but at the utter-
ance-level as input. The ranking function leverages the 
difference between neutral samples and samples associ-
ated with each emotion class in the dataset. The training 
process is formulated as solving a max-margin optimiza-
tion problem. The resulting emotion strength scalars can 
be manually adjusted or predicted based on text or refer-
ence speech.

In [64], both emotion class and emotion strength value 
are obtained via a joint emotion predictor based only 
on the input text. The input to the predictor is features 
extracted from input text via the Generative Pre-trained 
Transformer (GPT)-3 [88]. Emotion class and emotion 
strength are the two outputs of the predictor where the 
former is represented as a one-hot encoded vector and 
the latter is presented as a scalar value. Emotion labels 
and emotion strength values which are also obtained via 
[89], are used as ground truth for predictor training.

Another ranking method is proposed in [19] using the 
ranking support vector machine. The model generates 
style embedding and speaker embedding via two separate 
encoders. Both style and speaker embeddings at infer-
ence time are represented by centroids of each single 
speaker and style embeddings. However, a linear SVM 
is trained with the model to provide the ability for style 
embedding adjustment. The proposed SVM model is 
trained to classify between neutral emotion and a specific 
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emotion embedding, where the learned hyperplane is 
utilized to move(scale) the style vectors in a direction 
towards/opposite to the hyperplane.

Another type of control that contributes to generat-
ing speech with a better representation of local prosodic 
variation is introduced in [124]. The proposed model 
suggests an unsupervised approach to obtain word-level 
prominence and phrasal boundary strength features. For 
this purpose, continuous wavelet transform (CWT) [168] 
is utilized to extract continuous estimates of word promi-
nence and boundary information from the audio signal. 
First, the three prosodic signals f0, energy, and duration 
are extracted and combined as input to the CWT. Then, 
the combined signal is decomposed via CWT into scales 
that represent prosodic hierarchy. Word and phrase-level 
prosody are then obtained by following ridges or valleys 
across certain scales. The continuous word prominence 
and boundary estimates are achieved via the integration 
of the resulting lines aligned with the textual informa-
tion. With manually identified intervals, the continuous 
values of prominence and boundary strength are then 
discretized.

5.3.4  Prosody clustering
In this section, methods for selecting the appropri-
ate prosody embedding for the referenced-based ETTS 
models are described. To begin with, clustering methods 
are utilized in [57, 58] to generate representative pros-
ody embeddings for each emotion class when the GST-
TTS model is trained with a labeled dataset. Initially, 
the resulting emotion embeddings are clustered in a 2d 
space. In [57], the centroid of each cluster is used as the 
weights of the GSTs to generate emotion embedding for 
each emotion class. In [58], the weight vector that repre-
sents each emotion cluster is obtained by considering the 
inter and intra distances between emotion embedding 
clusters. Specifically, an algorithm is used for minimizing 
each embedding distance to the target emotion cluster 
and maximizing its distance to other emotion clusters.

Similarly, clustering algorithms are applied in [112, 
113] to achieve discrete prosody embeddings but for two 
specific prosody-related features. The two studies employ 
K-means algorithm to cluster F0 and duration features 
extracted for each phoneme. The centroids of the clus-
ters are then used as discrete F0 and duration values/
tokens for each phoneme. work [112] applies a balanced 
clustering method with duration features to overcome 
degradation in voice quality that appeared in [113] dur-
ing duration control. Moreover, to keep phonetic and 
prosodic information separate during training, an atten-
tion unit is introduced to map prosody tokens to decoder 
hidden states and generate prosody context vectors. The 
resulting discrete tokens for F0 and duration features 

provide a fine-grained level of control over prosody by 
changing the corresponding prosodic tokens for each 
phoneme.

In [105], a cross-domain SER model with the GST-
TTS model is proposed to obtain emotion embeddings 
for an unlabeled dataset. The cross-domain SER model 
is trained using two datasets including: 1) an SER data-
set (source) labeled with emotions, and 2) a TTS data-
set (target) that is not labeled. Simultaneously, the SER 
model trains an emotion classifier that generates soft 
labels for the unlabeled TTS dataset. These soft labels are 
then used to train an extended version of the baseline in 
[74] with an emotion predictor. In the training process, 
the weights of the style tokens layer are passed as input 
to the predictor, which employs the learned soft labels as 
ground truth values. At inference time, weights vectors 
for each emotion class are averaged to obtain the emo-
tion class embedding. However, since the predicted labels 
for the TTS dataset are soft labels, and thus not entirely 
reliable, only the top K samples with the highest posterior 
probabilities are selected.

5.4  Speech synthesis for unseen speakers and unseen 
styles

Building a speech synthesis model that supports mul-
tiple speakers or styles can be achieved by training TTS 
model with a multi-speaker multi-style dataset. How-
ever, generating speech for an unseen speaker or style is 
a challenging task for which several solutions have been 
proposed in the literature. A popular approach is to fine-
tune the averaged TTS model with some samples from 
the unseen target speaker or style. The fine-tuning pro-
cess may require a single sample from the unseen speaker 
or style (referred to as one-shot models) or a few samples 
(referred to as few-shot models). There are also models 
that do not require any fine-tuning steps, and these are 
known as zero-shot TTS models.

For instance, the fine-tuning process proposed in [112] 
focused on sentences used in the process to ensure pho-
netic coverage, meaning that each phoneme should 
appear at least once in these sentences. The proposed 
model requires about 5 minutes of recordings from the 
unseen target speaker to clone the voice and allow for 
manipulation of some voice features (such as F0 and 
duration) by the model at the phoneme-level.

Another approach to address the problem of unseen 
data is to employ specific structures in the TTS model, 
as proposed in [52, 96, 97, 107]. As an example, in [107], 
a cycle consistency network is proposed with two Vari-
ational Autoencoders (VAEs). The model incorporates 
two training paths: a paired path and an unpaired path. 
The unpaired path refers to training scenarios where the 
reference audio differs from the output (target) speech in 
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terms of text, style, or speaker. Two separate style encod-
ers are utilized in the model, with one dedicated to each 
path. This structure facilitates style transfer among intra-
speaker, inter-speaker, and unseen speaker scenarios.

In [52], the U-net structure proposed for the TTS 
model supports one-shot speech synthesis for unseen 
styles and speakers. The U-net structure is used between 
the style encoder and the mel decoder of the TTS model, 
with an opposite flow between them. Both the style 
encoder and decoder consist of multiple modules with 
the main building unit as ResCnn1D and instance nor-
malization (IN) layers. The decoder receives phoneme 
embedding and produces the Mel-spectrogram as out-
put. In parallel, the style encoder receives the reference 
audio and produces its linguistic content with guidance 
from the content (text) encoder. The style encoder mod-
ules produce latent variables, i.e., mean, and standard 
deviation, for the hidden inputs in the IN layers. These 
latent variables are used to bias and scale the normal-
ized hiddens of the corresponding module layers in the 
decoder.

A separate encoder (reference encoder) has been used 
in [96] to extract speaker-related information besides the 
prosody encoder (extractor) that encodes prosody fea-
tures into the prosody embedding. A prosody predictor 
is also trained to predict the prosody embedding based 
on the phoneme-embedding. While the instance nor-
malization (IN) layer is utilized by the prosody extractor 
to remove global (speaker) information and to keep pros-
ody-related information, the speaker encoder is designed 
with a special structure (Conv2D layers, residual blocks 
(GLU with fully connected layers), and a multi-head self-
attention unit) for better extraction of speaker informa-
tion. Moreover, instead of concatenation or summation 
with the decoder input, the speaker embedding is adap-
tively affine transformed to the different FFT blocks of 
the decoder through a Speaker-Adaptive Linear Modu-
lation (SALM) network that is inspired by Feature-wise 
Linear Modulation (FiLM) [141]. The speaker encoder 
and conditioning of decoder blocks with speaker embed-
ding allow the model to generate natural speech for 
unseen speakers with only a single reference sample 
(zero-shot).

The attention unit used in seq2seq TTS models aims 
at mapping the different length between text and audio 
pairs. However, it can get unstable when the input is 
not seen during training [97]. The STYLER model has 
addressed this issue by using a linear compression or 
expansion of the audio to match the text’s length via a 
method named Mel Calibrator. With this simplification 
of the alignment process as a scaling method, the unseen 
data robustness issue is alleviated and all audio-related 
style factors become dependent only on the audio.

Similarly, in [119], the Householder Normalizing Flow 
[169] is incorporated into the VAE-based baseline model 
[77]. The Householder normalizing flow applies a series 
of easily invertible affine transformations to align the 
VAE’s latent vectors (style embeddings) with a full covari-
ance Gaussian distribution. As a result, the correlation 
among the latent vectors is improved. Generally, this 
architecture enhances the disentanglement capability of 
the baseline model and enables it to generate embedding 
for unseen style with just a single (one-shot) utterance of 
around one second length.

The Multi-SpectroGAN TTS model proposed in [98] 
is a multi-speaker model trained based on adversarial 
feedback. The model supports the generation of speech 
for unseen styles/speakers by introducing adversarial 
style combination (ASC) during the training process. 
Style combinations result from mixing/interpolating style 
embeddings from different source speakers. The model is 
then trained with adversarial feedback using mixed-style 
mel-spectrograms. Two mixing methods are employed: 
binary selection or manifold mix-up via linear combina-
tion. This training strategy enables the model to generate 
more natural speech for unseen speakers.

Lastly, recent TTS models based on in-context learn-
ing [18, 22, 25] all share the capability to perform zero-
shot speech synthesis, as explained in Section  4.4. In 
fact, the in-context training strategy underlies the ability 
of these models to synthesize speech given only a style 
prompt with the input text. Specifically, the synthesis 
process treats the provided prompt/reference as part of 
the desired output speech. Therefore, the model’s goal is 
to predict the rest of this speech in the same style as the 
given part (prompt) and with the input text. In Table 5 we 
list papers addressing each challenge.

6  Datasets and open source codes
Deep learning models, including TTS models, rely heav-
ily on the availability of data in terms of size and diver-
sity. Furthermore, the quality of synthesized speech by 
TTS models is closely tied to the quality and size of the 
data used for model training. ETTS models face even 
greater challenges in this regard, as they require data to 
be not only high-quality and clean but also to accurately 
represent the numerous available speaking styles and 
emotions.

A main limitation in the domain of expressive speech 
synthesis is the inadequate availability of expressive 
speech datasets. Although there are several emotional 
and expressive speech datasets publicly available, they 
still fall short in terms of size, accuracy, and diversity 
required to train effective ETTS models. As a result, cur-
rent ETTS models still suffer from performance degrada-
tion and poor generalization. In [170], which introduces 
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a recent multi-emotion and multi-speaker dataset, it pro-
vides a concise summary of the majority of the available 
emotional speech datasets. Additionally, there are open 
expressive datasets, such as the Blizzard datasets [171], 
which are larger in size but lack any labels. Furthermore, 
widely used TTS datasets, such as LJSpeech [172] with 
a single speaker, and VCTK [173], and LibriTTS [174] 
with multiple speakers, are also employed in expres-
sive TTS models to address prosodic features generally, 
control issues, or learning different speakers’ styles. In 
Table 6, we list the main open-source databases used in 
the papers covered by this review.

Numerous internal expressive speech datasets are uti-
lized in many studies in literature. Some of these datasets 
are of large size and exhibit good quality, with high diver-
sity, including multiple speakers, styles, and emotions. 
However, they are not open to the research community. 
Additionally, replicating the work presented in these 
studies or making further improvements is challenging. 
Constructing an expressive speech dataset is, in fact, 
a demanding endeavor compared to collecting neutral 
speech datasets, due to several factors.

First of all, differences among speakers in portraying 
different speech styles or emotions pose the first chal-
lenge. Some speakers may overact, while others may mis-
interpret or blend acting styles or emotions. Secondly, 
there are variations in emotional interpretation among 
different listeners who annotate the same expressive 
speech, which can impact the accuracy and consistency 
of these datasets. Notably, [66] highlighted the differ-
ences in emotional reception among listeners for the 
same utterance, as explained in Section 3.1.

Moreover, the wide range of human emotions and 
speaking styles introduces further complexities. In the 
literature, emotions are defined and classified based 
on various criteria [175]. One common classification 
approach distinguishes between discrete emotions, 
which are considered basic emotions recognizable 
through facial expressions and biological processes, 
and dimensional emotions, which are identified based 
on dimensions such as valence and arousal [176, 177]. 
A well-known study conducted by Paul Ekman and 
Carroll Izard [178] involved cross-cultural studies and 
identified six main basic emotions, including anger, 

Table 5 List of papers addressing main expressive speech 
synthesis challenges. “IL” stands for information leakage, “LR” is a 
shortcut for inference that lack reference audio, “PC” stands for 
prosody controllability and “US” stands for unseen style/speaker

References Challenges addressed

IL LR PC US

[62] � � � �

[59, 96, 126] � � �

[97, 112, 120] � � �

[18, 22, 25, 52, 93, 98, 107, 119] � �

[23, 54, 101, 102, 117, 130, 137] �

[33, 63, 68, 70, 116] � �

[21, 47, 111] � �

[19] � �

[31, 48, 49, 53, 55, 57, 58, 61, 71, 72, 79, 99, 105, 
113, 122–125, 128, 133, 138]

�

[17, 35, 37, 44, 46, 50, 73, 91, 94, 100, 129, 131] �

Table 6 List of main open source expressive TTS databases according to publications reviewed in this work

Database Language Multi Emotion Multi Speaker

Blizz ard Chall enge 2012, 2013, 2016, 2019 English

VCTK English �

Libri Speech English �

IEMOC AP English � �

CMU ARCTIC English �

LJSpe ech English

Libri TTS English �

Chine se Stand ard Manda rin Speec h Copus (CSMSC) Mandarin Chinese

Aishe ll-3 Mandarin Chinese

Korea n Emoti onal Speec h (KES)  datas et Korean �

Engli sh conve rsati on corpu s (ECC) English �

Indic TTS datab ase Indian

Emoti onal Speec h Datas et (ESD) English/Mandarin Chinese � �

Japan ese Kamis hibai  and audio book corpu s (J- KAC) Japanese

Multi lingu al Libri Speech Multilingual �

Korea n Singl e Speak er (KSS) Korean �

https://www.synsig.org/index.php/Blizzard_challenge
https://paperswithcode.com/dataset/vctk
https://www.openslr.org/12/
https://sail.usc.edu/iemocap/
http://www.festvox.org/cmu_arctic/
https://keithito.com/LJ-Speech-Dataset/
https://openslr.org/60/
https://www.databaker.com/open%20source.html
https://www.aishelltech.com/aishell_3
https://nanum.etri.re.kr/share/kjnoh2/KESDy18?lang=En_us
https://github.com/thuhcsi/english-conversation-corpus
https://www.iitm.ac.in/donlab/tts/database.php
https://github.com/HLTSingapore/Emotional-Speech-Data
https://sites.google.com/site/shinnosuketakamichi/research-topics/j-kac_corpus?authuser=0
https://ai.meta.com/blog/a-new-open-data-set-for-multilingual-speech-research/
https://www.kaggle.com/datasets/bryanpark/korean-single-speaker-speech-dataset
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disgust, fear, happiness, sadness, and surprise. In fact, 
although the available emotional datasets diverge in the 
set of emotions they cover, as shown in [170], most of 
the emotions considered in these datasets belong to the 
six basic emotion classes identified by [178].

Additionally, when considering different languages 
and multiple speakers, the challenge becomes more 
intricate. However, with the new trend that introduces 
the language modeling approach to the field of speech 
synthesis, it becomes possible to train TTS models on 
a large amount of data using an in-context learning 
strategy. This vast amount of data provides diversity 
in speakers, speaking styles, and prosodies, and it can 
be used for training despite noisy speech and inaccu-
rate transcriptions. In fact, recent TTS models based 
on language modeling, such as VALL-E [22], Natural-
Speech 2 [18], and Voicebox [25], have been successful 
in various speech-related tasks, especially zero-shot 
speech synthesis. Besides, they have shown promising 
results in expressive speech synthesis, as they are able 
to replicate the speech style and emotion provided in a 
single input acoustic prompt to the synthesized speech.

As for open-source codes, several implementations and 
repositories are publicly available. Table 7 list some main 
open-source implementations for expressive speech syn-
thesis models.

7  Evaluation metrics
An essential step in building any generative model is to 
evaluate its performance and compare it to the previous 
state-of-the-art models. In addition to using the same 
datasets, standard evaluation metrics are also needed 
to compare different approaches with each other. While 
evaluation metrics applied for general TTS models focus 
on speech quality in terms of intelligibility and natural-
ness, the assessment of ETTS models’ performance 
goes beyond that, focusing on other aspects. Evalua-
tion metrics of ETTS models measure more aspects like 
emotion or style expressiveness, prosodic features, and 
controllability over all these aspects. Tables  8 and 9 list 
the common objective and subjective metrics applied for 
evaluating TTS models’ performance, respectively.

In fact, all the mentioned objective and subjective eval-
uation metrics have been applied by the studies covered 
in this review. However, in many studies, these metrics 
have been applied differently to assess aspects related 
to expressivity. In other words, these metrics have been 
applied to samples representing different emotions, 
speaking styles, and their varying levels of strength or 
intensity. Furthermore, samples can represent various 
speech synthesis scenarios, such as parallel/non-parallel 
style transfer and seen/unseen styles or speakers.

On the other hand, various additional methods have 
been proposed in the papers to evaluate either the effec-
tiveness of the proposed models or the expressiveness of 
the synthesized speech. For instance, emotion and style 
classifiers as in [57, 64] and speech emotion recognition 
(SER) models as in [19, 58] which are used to measure 
classification accuracy, reflecting the efficiency of the 

Table 7 List of main open source implementations for TTS 
models with related links

Source name Link

Espnet github. com/ espnet/ espnet

coqui github. com/ coqui- ai

Mozilla github. com/ mozil la

NeMo (NVidia) github. com/ NVIDIA/ NeMo

espeak-ng https:// github. com/ espeak- ng/ espeak- ng

marytts github. com/ maryt ts

CSTR-Edinburgh github. com/ CSTR- Edinb urgh

Hugging Face huggi ngface. co/ docs/ trans forme rs/ tasks/ 
text- to- speech

Table 8 Objective evaluation metrics for expressive speech synthesis models

Metric Description

Mel-Cepstral Distortion (MCD) Sums the squared differences between the Mel-Frequency Cepstrum Coefficients (MFCC) from the ground truth 
and synthesized sample.

Gross Pith Error (GPE) Calculates percentage of voiced frames that deviate in pitch by more than 20% compared to the ground truth 
samples.

Voice Decision Error (VDE) Measures the difference of voiced/unvoiced decision between the ground truth and the synthesized sample.

F0 Frame Error (FFE) Combines GPE and VDE by measuring the percentage of frames that either contain a 20% pitch error (GPE) 
or a voicing decision error (VDE) in ground truth and synthesized samples.

Word Error Rate (WER) Measures word error rate of the synthesized speech’s transcription with respect to the input text. Public auto-
matic speech recognition (ASR) models are used for transcribing synthesized speech.

Band APeriodicity Distortion (BAPD) Measures over linearly spaced band aperiodicity coefficients between the ground truth and the synthesized 
samples.

Root Mean Square Error (RMSE) Measure the root mean square error of F0 or energy of the synthesized samples compared to their ground truth.

https://github.com/espnet/espnet
https://github.com/coqui-ai
https://github.com/mozilla
https://github.com/NVIDIA/NeMo
https://github.com/espeak-ng/espeak-ng
https://github.com/marytts
https://github.com/CSTR-Edinburgh
https://huggingface.co/docs/transformers/tasks/text-to-speech
https://huggingface.co/docs/transformers/tasks/text-to-speech
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proposed model in generating emotional speech. Fur-
thermore, visualization and plotting of different prosodic 
features, variables, or embeddings are also employed in 
several studies [27, 63, 71, 105, 112, 122] to evaluate the 
expressivity of generated samples and compare different 
approaches or synthesizing scenarios. Additionally, abla-
tion studies as in [19, 97] have also been conducted to 
measure the effectiveness of each component in the pro-
posed model and how it affects the expressivity of gener-
ated speech.

8  Discussion
This systematic review of ETTS models within the last 
5 years has shown a wide variety of methods and tech-
niques that have been applied in this field, particularly 
DL-based approaches. However, current ETTS models 
are still far away from achieving their goal of generating 
human-like speech in terms of expressiveness, variabil-
ity, and control flexibility. The main contribution of this 
review to the literature is to provide a full picture of the 
efforts that have been conducted in this field for new-
comers or beginner researchers, helping them to identify 
their roadmap within this area.

On the other hand, we hope that the provided infor-
mation and summaries in this review including meth-
ods taxonomy, modeling challenges, datasets and 
evaluation metrics can be of good support and guidance 
for researchers in this area to compare and identify state-
of-the-art models on one side, and to spot gaps yet to be 
filled on the other side. Our focus in this review was to 
identify the main methods and structures applied in lit-
erature for ETTS besides challenges and problems that 
they encounter. Nevertheless, papers covered here can 
be further investigated to analyze models’ performance 
and compare their results utilizing the same datasets and 
evaluation metrics.

Additionally, based on our investigation in this review, 
we would like in this discussion to highlight some 
research gaps within this research area that need to be 
considered in future work.

• Terminology Identification: During the course 
of this work, we observed a lack of clear defini-
tions for main terminologies used in this research 
area, such as “expressive,” “emotion,” “prosody,” 
and “style”. Early studies, as in [78, 80, 82], often 
used the terms “emotion” and “style” interchange-
ably, encompassing data with different emotions 
(happy, sad, etc.) or a blend of emotion and style 
(e.g., happy call center, sad technical support). Fur-
thermore, the term “expressive speech” is used in 
a general sense to describe speech that is natural-
sounding and resembles human speech overall, 
as in studies [35, 40, 54, 76, 94, 97, 114, 119, 134, 
135]. However, it is also utilized in other studies 
to describe speech with different labels for emo-
tions [26, 28, 49, 64, 91], styles (newscaster, talk-
show, call-center, storytelling.) [45, 106, 115, 118], 
or combinations of emotions and styles [19, 59, 68, 
78, 79, 84]. On the other hand, a single style itself 
can encompass speech featuring multiple emotions 
and variable prosody attributes, as exemplified by 
the Blizzard2013 dataset [171], which includes 
data in a storytelling style. Many studies [50, 74, 
93, 94, 121, 122] employ the Blizzard2013 dataset 
to train their TTS models and generate expressive 
speech. The resulting speech from these models in 
this case exhibits varying prosody and conveys dif-
ferent emotions. In general, the existing literature 
lacks a distinct differentiation among these termi-
nologies and their associated variations, which can 
lead to confusion among researchers and compli-
cated comparisons between models. Therefore, it 

Table 9 Subjective evaluation metrics for expressive speech synthesis models

Metric Description

Mean Opinion Score (MOS) Listeners to scores quality (naturalness and intelligibility) of synthesized speech with a five-point scoring 
system.

Comparison Mean Opinion score (CMOS) Compares MOS values between models under test and the baseline via comparing ground truth and syn-
thetic samples from each model.

Differential mean opinion score (DMOS) Listeners score samples from one to five based on its similarity to a specific emotion or style.

AB preference test Listeners score same sentence synthesized by the two models and select the one that fulfills the given con-
dition more than the other.

ABX preference test Listeners hear three samples A, B and X ,where X represents the target speech, and they should score 
the one that is more close to target speech.

MUltiple Stimuli Hidden Reference 
and Anchor (MUSHRA)

Listeners are presented with mixed samples including synthesized sample, natural speech samples (named 
proper reference) and total loss sample (named anchor). Listeners score each sample from 0 to 100 
through a double-blind listening test.
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is highly recommended to conduct further investi-
gation to establish clear and comprehensive defini-
tions for these terms. Specifically, each term needs 
to be accurately delineated, specifying its respec-
tive types, attributes, and speech features.

• Controllable Expressive Speech: Providing con-
trol over the expressiveness of synthesized speech 
can be considered an advanced step in this area 
of research. As we have discussed in Section  5.3 
several recent studies have addressed different 
aspects to provide more control over expressiv-
ity in synthesized speech. The aspects covered in 
these studies include selection and adjusting dif-
ferent prosody-related features at coarse levels 
(utterance, paragraph, sentence, etc.) as well as 
fine-grained levels (word, syllables, phonemes, 
etc.). However, the proposed controlling tech-
niques with their achieved results are still consid-
ered small steps in this important research area 
of expressive speech synthesis, and more efforts 
are needed and expected in this direction in the 
near future. In fact, bridging this research gap is a 
crucial step towards the goal of speech synthesis 
research to produce human-like speech.

• Evaluation metrics: Despite the existence of sev-
eral metrics applied in the literature to evalu-
ate the performance of ETTS models, no gen-
eral and standard metrics have been identified to 
facilitate the comparison process among different 
approaches. Furthermore, since the evaluation of 
expressive speech is more sophisticated and chal-
lenging, there is still a high demand for more accu-
rate metrics capable of capturing various aspects 
of expressiveness in speech. Additionally, with the 
increased attention on building controllable ETTS 
models, the need arises for efficient evaluation 
metrics for controllability related aspects.

• Datasets: As discussed in Section  6, availability 
of inclusive, high quality and large size expres-
sive dataset is crucial for achieving efficient ETTS 
models. However, building a comprehensive emo-
tional speech dataset that encompasses a wide 
range of emotions, styles, speakers, and languages 
with high quality remains a formidable objective 
in the expressive speech synthesis field. The chal-
lenges extend beyond the issues mentioned in Sec-
tion  6 and encompass aspects such as time and 
cost. Language modeling-based approaches could 
be the future of the field, overcoming these chal-
lenges, but they are still in the early stages, and 
further research in this direction is necessary.

9  Conclusion
This paper presents the findings of our systematic lit-
erature review on expressive speech synthesis over the 
past 5 years. The main contribution of this article is the 
development of a comprehensive taxonomy for DL-based 
approaches published in this field during that specific 
time frame. The approaches are classified into three pri-
mary categories based on the learning method, followed 
by models within each category. Further subcategories 
are identified at the lower levels of the taxonomy, con-
sidering the methods and structures applied to achieve 
expressiveness in synthesized speech. In addition to the 
ETTS approaches taxonomy, we provide descriptions 
of the main challenges in the ETTS field and proposed 
solutions from the literature. Furthermore, we support 
the reader with brief summaries of ETTS datasets, per-
formance evaluation metrics, and some open-source 
implementations. The significance of our work lies in 
its potential to serve as an extensive overview of the 
research conducted in this area from different aspects, 
benefiting both experienced researchers and newcomers 
in this active research domain.

Some main directions for future work in this area 
involve collection of large expressive datasets in differ-
ent languages, going from acted expressive style to real-
istic style. Further evaluation metrics are still needed 
in this area for assessing models’ performance such as 
evaluation of prosody controllability. Efficient metrics 
are also required for monitoring performance and guid-
ing loss evaluation during the training process. These 
need to be lightweight and fast in order not to slow down 
training but still reliable. Another suggestion for future 
investigations is to take cultural differences in percep-
tion of expressions into account for multi-language, 
multi-speaker expressive TTS applications. Moreover, as 
speech is just one modality for expressions, multi-modal 
approaches that combine facial expressions, eye move-
ments, body movements, gestures, non-verbal clues, etc., 
will be required to reach human-level expressiveness. 
Training several modalities together could be beneficial 
as the model can transfer useful information from one 
modality to another in a self-supervised fashion.
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