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Abstract

Several recent end-to-end text-to-speech (TTS)
models enabling single-stage training and parallel
sampling have been proposed, but their sample
quality does not match that of two-stage TTS sys-
tems. In this work, we present a parallel end-
to-end TTS method that generates more natu-
ral sounding audio than current two-stage mod-
els. Our method adopts variational inference aug-
mented with normalizing flows and an adversarial
training process, which improves the expressive
power of generative modeling. We also propose a
stochastic duration predictor to synthesize speech
with diverse rhythms from input text. With the
uncertainty modeling over latent variables and
the stochastic duration predictor, our method ex-
presses the natural one-to-many relationship in
which a text input can be spoken in multiple ways
with different pitches and rhythms. A subjective
human evaluation (mean opinion score, or MOS)
on the LJ Speech, a single speaker dataset, shows
that our method outperforms the best publicly
available TTS systems and achieves a MOS com-
parable to ground truth.

1. Introduction

Text-to-speech (TTS) systems synthesize raw speech wave-
forms from given text through several components. With
the rapid development of deep neural networks, TTS sys-
tem pipelines have been simplified to two-stage genera-
tive modeling apart from text preprocessing such as text
normalization and phonemization. The first stage is to
produce intermediate speech representations such as mel-
spectrograms (Shen et al., 2018) or linguistic features (Oord
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et al., 2016) from the preprocessed text,! and the second
stage is to generate raw waveforms conditioned on the in-
termediate representations (Oord et al., 2016; Kalchbrenner
et al., 2018). Models at each of the two-stage pipelines have
been developed independently.

Neural network-based autoregressive TTS systems have
shown the capability of synthesizing realistic speech (Shen
et al., 2018; Li et al., 2019), but their sequential generative
process makes it difficult to fully utilize modern parallel pro-
cessors. To overcome this limitation and improve synthesis
speed, several non-autoregressive methods have been pro-
posed. In the text-to-spectrogram generation step, extracting
attention maps from pre-trained autoregressive teacher net-
works (Ren et al., 2019; Peng et al., 2020) is attempted to
decrease the difficulty of learning alignments between text
and spectrograms. More recently, likelihood-based methods
further eliminate the dependency on external aligners by
estimating or learning alignments that maximize the likeli-
hood of target mel-spectrograms (Zeng et al., 2020; Miao
et al., 2020; Kim et al., 2020). Meanwhile, generative adver-
sarial networks (GANs) (Goodfellow et al., 2014) have been
explored in second stage models. GAN-based feed-forward
networks with multiple discriminators, each distinguishing
samples at different scales or periods, achieve high-quality
raw waveform synthesis (Kumar et al., 2019; Binkkowski
et al., 2019; Kong et al., 2020).

Despite the progress of parallel TTS systems, two-stage
pipelines remain problematic because they require sequen-
tial training or fine-tuning (Shen et al., 2018; Weiss et al.,
2020) for high-quality production wherein latter stage mod-
els are trained with the generated samples of earlier stage
models. In addition, their dependency on predefined inter-
mediate features precludes applying learned hidden repre-
sentations to obtain further improvements in performance.
Recently, several works, i.e., FastSpeech 2s (Ren et al.,
2021) and EATS (Donahue et al., 2021), have proposed
efficient end-to-end training methods such as training over
short audio clips rather than entire waveforms, leveraging a
mel-spectrogram decoder to aid text representation learning,

! Although there is a text preprocessing step in TTS systems,
We herein use preprocessed text interchangeably with the word
“text”.
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and designing a specialized spectrogram loss to relax length-
mismatch between target and generated speech. However,
despite potentially improving performance by utilizing the
learned representations, their synthesis quality lags behind
two-stage systems.

In this work, we present a parallel end-to-end TTS method
that generates more natural sounding audio than cur-
rent two-stage models. Using a variational autoencoder
(VAE) (Kingma & Welling, 2014), we connect two modules
of TTS systems through latent variables to enable efficient
end-to-end learning. To improve the expressive power of
our method so that high-quality speech waveforms can be
synthesized, we apply normalizing flows to our conditional
prior distribution and adversarial training on the waveform
domain. In addition to generating fine-grained audio, it is
important for TTS systems to express the one-to-many rela-
tionship in which text input can be spoken in multiple ways
with different variations (e.g., pitch and duration). To tackle
the one-to-many problem, we also propose a stochastic du-
ration predictor to synthesize speech with diverse rhythms
from input text. With the uncertainty modeling over latent
variables and the stochastic duration predictor, our method
captures speech variations that cannot be represented by
text.

Our method obtains more natural sounding speech and
higher sampling efficiency than the best publicly avail-
able TTS system, Glow-TTS (Kim et al., 2020) with HiFi-
GAN (Kong et al., 2020). We make both our demo page
and source-code publicly available.?

2. Method

In this section, we explain our proposed method and the ar-
chitecture of it. The proposed method is mostly described in
the first three subsections: a conditional VAE formulation;
alignment estimation derived from variational inference;
adversarial training for improving synthesis quality. The
overall architecture is described at the end of this section.
Figures la and 1b show the training and inference proce-
dures of our method, respectively. From now on, we will
refer to our method as Variational Inference with adversarial
learning for end-to-end Text-to-Speech (VITS).

2.1. Variational Inference

2.1.1. OVERVIEW

VITS can be expressed as a conditional VAE with the ob-
jective of maximizing the variational lower bound, also
called the evidence lower bound (ELBO), of the intractable
marginal log-likelihood of data log pg (z|c):

2Source-code: https://github.com/jaywalnut310/vits
Demo: https://jaywalnut310.github.io/vits-demo/index.html

qp(z]2) 0
po(z[c)

where py(z|c) denotes a prior distribution of the latent vari-
ables z given condition ¢, pg(x|z) is the likelihood func-
tion of a data point x, and g4(z|x) is an approximate pos-
terior distribution. The training loss is then the negative
ELBO, which can be viewed as the sum of reconstruc-
tion loss —log pg(x|z) and KL divergence log ¢y (z|z) —
log pg(z|c), where z ~ g4 (z|x).

log po(z[c) > Ey, (z1) [logpa(xIZ)—log

2.1.2. RECONSTRUCTION LOSS

As a target data point in the reconstruction loss, we use a
mel-spectrogram instead of a raw waveform, denoted by
Tmel. We upsample the latent variables z to the waveform
domain g through a decoder and transform g to the mel-
spectrogram domain Z,,.;. Then the L; loss between the
predicted and target mel-spectrogram is used as the recon-
struction loss:

Lrecon = meel - jmel”l (2)

This can be viewed as maximum likelihood estimation as-
suming a Laplace distribution for the data distribution and
ignoring constant terms. We define the reconstruction loss in
the mel-spectrogram domain to improve the perceptual qual-
ity by using a mel-scale that approximates the response of
the human auditory system. Note that the mel-spectrogram
estimation from a raw waveform does not require trainable
parameters as it only uses STFT and linear projection onto
the mel-scale. Furthermore, the estimation is only employed
during training, not inference. In practice, we do not upsam-
ple the whole latent variables z but use partial sequences as
an input for the decoder, which is the windowed generator
training used for efficient end-to-end training (Ren et al.,
2021; Donahue et al., 2021).

2.1.3. KL-DIVERGENCE

The input condition of the prior encoder c is composed of
phonemes c¢;.,; extracted from text and an alignment A be-
tween phonemes and latent variables. The alignment is a
hard monotonic attention matrix with |¢¢e.t| X |2| dimen-
sions representing how long each input phoneme expands to
be time-aligned with the target speech. Because there are no
ground truth labels for the alignment, we must estimate the
alignment at each training iteration, which we will discuss
in Section 2.2.1. In our problem setting, we aim to provide
more high-resolution information for the posterior encoder.
We, therefore, use the linear-scale spectrogram of target
speech xy;,, as input rather than the mel-spectrogram. Note
that the modified input does not violate the properties of
variational inference. The KL divergence is then:

Ly = log q¢(2|Tiin) — log pe(2|cteat, A) 3)

2~ qg(2|T1in) = N(2; pig(T1in), 06 (T1in))
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Figure 1. System diagram depicting (a) training procedure and (b) inference procedure. The proposed model can be viewed as a conditional
VAE; a posterior encoder, decoder, and conditional prior (green blocks: a normalizing flow, linear projection layer, and text encoder) with

a flow-based stochastic duration predictor.

The factorized normal distribution is used to parameterize
our prior and posterior encoders. We found that increasing
the expressiveness of the prior distribution is important for
generating realistic samples. We, therefore, apply a normal-
izing flow fy (Rezende & Mohamed, 2015), which allows
an invertible transformation of a simple distribution into a
more complex distribution following the rule of change-of-
variables, on top of the factorized normal prior distribution:

dfo(2)
0z

Po(le) = N(fo(2): 1o(c). 00 c)) | det

c= [Ctewtv A]

NC)

2.2. Alignment Estimation
2.2.1. MONOTONIC ALIGNMENT SEARCH

To estimate an alignment A between input text and
target speech, we adopt Monotonic Alignment Search
(MAS) (Kim et al., 2020), a method to search an align-
ment that maximizes the likelihood of data parameterized
by a normalizing flow f:

A= arg max lng(xlctewtv A)
A
= argmax log N (f(2); p(crext, A), 0 (Creat, A)) ()
A

where the candidate alignments are restricted to be mono-
tonic and non-skipping following the fact that humans read

text in order without skipping any words. To find the
optimum alignment, Kim et al. (2020) use dynamic pro-
gramming. Applying MAS directly in our setting is dif-
ficult because our objective is the ELBO, not the exact
log-likelihood. We, therefore, redefine MAS to find an
alignment that maximizes the ELBO, which reduces to find-
ing an alignment that maximizes the log-likelihood of the
latent variables z:

arg max log pg (xmel ‘Z) — log M
A pg(z‘ctezt;A)

= arg max log po (2|ctent, A)
A

= log N(f@ (Z)a e (Ctewta A)v 09 (ctezh A)) (6)
Due to the resemblance of Equation 5 to Equation 6, we can
use the original MAS implementation without modification.
Appendix A includes pseudocode for MAS.

2.2.2. DURATION PREDICTION FROM TEXT

We can calculate the duration of each input token d; by sum-
ming all the columns in each row of the estimated alignment
>_; Ai,j- The duration could be used to train a determinis-
tic duration predictor, as proposed in previous work (Kim
et al., 2020), but it cannot express the way a person utters at
different speaking rates each time. To generate human-like
rhythms of speech, we design a stochastic duration predictor
so that its samples follow the duration distribution of given
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phonemes. The stochastic duration predictor is a flow-based
generative model that is typically trained via maximum like-
lihood estimation. The direct application of maximum likeli-
hood estimation, however, is difficult because the duration of
each input phoneme is 1) a discrete integer, which needs to
be dequantized for using continuous normalizing flows, and
2) a scalar, which prevents high-dimensional transformation
due to invertibility. We apply variational dequantization (Ho
et al., 2019) and variational data augmentation (Chen et al.,
2020) to solve these problems. To be specific, we introduce
two random variables u and v, which have the same time
resolution and dimension as that of the duration sequence d,
for variational dequatization and variational data augmenta-
tion, respectively. We restrict the support of u to be [0, 1) so
that the difference d — u becomes a sequence of positive real
numbers, and we concatenate v and d channel-wise to make
a higher dimensional latent representation. We sample the
two variables through an approximate posterior distribution
q¢(u,v|d, ctert). The resulting objective is a variational
lower bound of the log-likelihood of the phoneme duration:

10gp9(d|ctext) >
p@(d —u, V|Ctext)

E
d¢ (ua V|d7 Ctext)

log

| @

4 (u,v|d,Crext)

The training loss L4, is then the negative variational lower
bound. We apply the stop gradient operator (van den Oord
et al., 2017), which prevents back-propagating the gradient
of inputs, to the input conditions so that the training of the
duration predictor does not affect that of other modules.

The sampling procedure is relatively simple; the phoneme
duration is sampled from random noise through the inverse
transformation of the stochastic duration predictor, and then
it is converted to integers.

2.3. Adversarial Training

To adopt adversarial training in our learning system, we add
a discriminator D that distinguishes between the output gen-
erated by the decoder GG and the ground truth waveform y.
In this work, we use two types of loss successfully applied in
speech synthesis; the least-squares loss function (Mao et al.,
2017) for adversarial training, and the additional feature-
matching loss (Larsen et al., 2016) for training the generator:

Loa(D) = Eqy.o) [(Dly) =1 + (DGE)],  ®

Loas(G) = B[ (D(G(2) = 1] ©
T

Lim(G) = B[ 3 1 ID'(0) = DUGE)IL] 10

=1

where 7' denotes the total number of layers in the discrim-
inator and D' outputs the feature map of the /-th layer of

the discriminator with /N; number of features. Notably, the
feature matching loss can be seen as reconstruction loss that
is measured in the hidden layers of the discriminator sug-
gested as an alternative to the element-wise reconstruction
loss of VAEs (Larsen et al., 2016).

2.4. Final Loss

With the combination of VAE and GAN training, the total
loss for training our conditional VAE can be expressed as
follows:

Lvae = Lrecon + Lkl + Ldur + Ladv(G) + Lfm(G) (11)

2.5. Model Architecture

The overall architecture of the proposed model consists of
a posterior encoder, prior encoder, decoder, discriminator,
and stochastic duration predictor. The posterior encoder and
discriminator are only used for training, not for inference.
Architectural details are available in Appendix B.

2.5.1. POSTERIOR ENCODER

For the posterior encoder, we use the non-causal WaveNet
residual blocks used in WaveGlow (Prenger et al., 2019)
and Glow-TTS (Kim et al., 2020). A WaveNet residual
block consists of layers of dilated convolutions with a gated
activation unit and skip connection. The linear projection
layer above the blocks produces the mean and variance of
the normal posterior distribution. For the multi-speaker case,
we use global conditioning (Oord et al., 2016) in residual
blocks to add speaker embedding.

2.5.2. PRIOR ENCODER

The prior encoder consists of a text encoder that processes
the input phonemes c;.,¢ and a normalizing flow fy that
improves the flexibility of the prior distribution. The text
encoder is a transformer encoder (Vaswani et al., 2017) that
uses relative positional representation (Shaw et al., 2018)
instead of absolute positional encoding. We can obtain the
hidden representation hye, from cge,¢ through the text en-
coder and a linear projection layer above the text encoder
that produces the mean and variance used for constructing
the prior distribution. The normalizing flow is a stack of
affine coupling layers (Dinh et al., 2017) consisting of a
stack of WaveNet residual blocks. For simplicity, we design
the normalizing flow to be a volume-preserving transforma-
tion with the Jacobian determinant of one. For the multi-
speaker setting, we add speaker embedding to the residual
blocks in the normalizing flow through global conditioning.

2.5.3. DECODER

The decoder is essentially the HiFi-GAN V1 genera-
tor (Kong et al., 2020). It is composed of a stack of trans-
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posed convolutions, each of which is followed by a multi-
receptive field fusion module (MRF). The output of the
MREF is the sum of the output of residual blocks that have
different receptive field sizes. For the multi-speaker setting,
we add a linear layer that transforms speaker embedding
and add it to the input latent variables z.

2.5.4. DISCRIMINATOR

We follow the discriminator architecture of the multi-period
discriminator proposed in HiFi-GAN (Kong et al., 2020).
The multi-period discriminator is a mixture of Markovian
window-based sub-discriminators (Kumar et al., 2019), each
of which operates on different periodic patterns of input
waveforms.

2.5.5. STOCHASTIC DURATION PREDICTOR

The stochastic duration predictor estimates the distribu-
tion of phoneme duration from a conditional input hyey.
For the efficient parameterization of the stochastic dura-
tion predictor, we stack residual blocks with dilated and
depth-separable convolutional layers. We also apply neural
spline flows (Durkan et al., 2019), which take the form of
invertible nonlinear transformations by using monotonic
rational-quadratic splines, to coupling layers. Neural spline
flows improve transformation expressiveness with a similar
number of parameters compared to commonly used affine
coupling layers. For the multi-speaker setting, we add a
linear layer that transforms speaker embedding and add it to
the input Ayeqyt-

3. Experiments
3.1. Datasets

We conducted experiments on two different datasets. We
used the LJ Speech dataset (Ito, 2017) for compari-
son with other publicly available models and the VCTK
dataset (Veaux et al., 2017) to verify whether our model
can learn and express diverse speech characteristics. The
LJ Speech dataset consists of 13,100 short audio clips of a
single speaker with a total length of approximately 24 hours.
The audio format is 16-bit PCM with a sample rate of 22
kHz, and we used it without any manipulation. We ran-
domly split the dataset into a training set (12,500 samples),
validation set (100 samples), and test set (500 samples). The
VCTK dataset consists of approximately 44,000 short audio
clips uttered by 109 native English speakers with various
accents. The total length of the audio clips is approximately
44 hours. The audio format is 16-bit PCM with a sample
rate of 44 kHz. We reduced the sample rate to 22 kHz.
We randomly split the dataset into a training set (43,470
samples), validation set (100 samples), and test set (500
samples).

3.2. Preprocessing

We use linear spectrograms which can be obtained from
raw waveforms through the Short-time Fourier transform
(STFT), as input of the posterior encoder. The FFT size,
window size and hop size of the transform are set to 1024,
1024 and 256, respectively. We use 80 bands mel-scale
spectrograms for reconstruction loss, which is obtained by
applying a mel-filterbank to linear spectrograms.

We use International Phonetic Alphabet (IPA) sequences as
input to the prior encoder. We convert text sequences to IPA
phoneme sequences using open-source software (Bernard,
2021), and the converted sequences are interspersed with a
blank token following the implementation of Glow-TTS.

3.3. Training

The networks are trained using the AdamW opti-
mizer (Loshchilov & Hutter, 2019) with 51 = 0.8, 52 =
0.99 and weight decay A = 0.01. The learning rate decay is
scheduled by a 0.999'/8 factor in every epoch with an initial
learning rate of 2 x 10~%. Following previous work (Ren
et al., 2021; Donahue et al., 2021), we adopt the windowed
generator training, a method of generating only a part of
raw waveforms to reduce the training time and memory
usage during training. We randomly extract segments of
latent representations with a window size of 32 to feed to
the decoder instead of feeding entire latent representations
and also extract the corresponding audio segments from the
ground truth raw waveforms as training targets. We use
mixed precision training on 4 NVIDIA V100 GPUs. The
batch size is set to 64 per GPU and the model is trained up
to 800k steps.

3.4. Experimental Setup for Comparison

We compared our model with the best publicly available
models. We used Tacotron 2, an autoregressive model, and
Glow-TTS, a flow-based non-autoregressive model, as first
stage models and HiFi-GAN as a second stage model. We
used their public implementations and pre-trained weights.?
Since a two-stage TTS system can theoretically achieve
higher synthesis quality through sequential training, we in-
cluded the fine-tuned HiFi-GAN up to 100k steps with the
predicted outputs from the first stage models. We empiri-
cally found that fine-tuning HiFi-GAN with the generated
mel-spectrograms from Tacotron 2 under teacher-forcing
mode, led to better quality for both Tacotron 2 and Glow-
TTS than fine-tuning with the generated mel-spectrograms
from Glow-TTS, so we appended the better fine-tuned HiFi-

The implementations are as follows:
Tacotron 2 : https://github.com/NVIDIA/tacotron2
Glow-TTS : https://github.com/jaywalnut310/glow-tts
HiFi-GAN : https://github.com/jik876/hifi-gan
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GAN to both Tacotron 2 and Glow-TTS.

As each model has a degree of randomness during sampling,
we fixed hyper-parameters that controls the randomness of
each model throughout our experiments. The probability of
dropout in the pre-net of Tactron 2 was set to 0.5. For Glow-
TTS, the standard deviation of the prior distribution was set
to 0.333. For VITS, the standard deviation of input noise
of the stochastic duration predictor was set to 0.8 and we
multiplied a scale factor of 0.667 to the standard deviation
of the prior distribution.

4. Results
4.1. Speech Synthesis Quality

We conducted crowd-sourced MOS tests to evaluate the
quality. Raters listened to randomly selected audio samples,
and rated their naturalness on a 5 point scale from 1 to 5.
Raters were allowed to evaluate each audio sample once,
and we normalized all the audio clips to avoid the effect
of amplitude differences on the score. All of the quality
assessments in this work were conducted in this manner.

The evaluation results are shown in Table 1. VITS outper-
forms other TTS systems and achieves a similar MOS to that
of ground truth. The VITS (DDP), which employs the same
deterministic duration predictor architecture used in Glow-
TTS rather than the stochastic duration predictor, scores the
second-highest among TTS systems in the MOS evaluation.
These results imply that 1) the stochastic duration predictor
generates more realistic phoneme duration than the deter-
ministic duration predictor and 2) our end-to-end training
method is an effective way to make better samples than
other TTS models even if maintaining the similar duration
predictor architecture.

Table 1. Comparison of evaluated MOS with 95% confidence in-
tervals on the LJ Speech dataset.

Model MOS (CI)

Ground Truth 4.46 (+0.06)
Tacotron 2 + HiFi-GAN 3.77 (£0.08)
Tacotron 2 + HiFi-GAN (Fine-tuned) 4.25 (4+0.07)
Glow-TTS + HiFi-GAN 4.14 (£0.07)
Glow-TTS + HiFi-GAN (Fine-tuned) 4.32 (4+0.07)
VITS (DDP) 4.39 (£0.06)
VITS 4.43 (+0.06)

We conducted an ablation study to demonstrate the effec-
tiveness of our methods, including the normalized flow in
the prior encoder and linear-scale spectrogram posterior in-
put. All models in the ablation study were trained up to
300k steps. The results are shown in Table 2. Removing

the normalizing flow in the prior encoder results in a 1.52
MOS decrease from the baseline, demonstrating that the
prior distribution’s flexibility significantly influences the
synthesis quality. Replacing the linear-scale spectrogram
for posterior input with the mel-spectrogram results in a
quality degradation (-0.19 MOS), indicating that the high-
resolution information is effective for VITS in improving
the synthesis quality.

Table 2. MOS comparison in the ablation studies.

Model MOS (CI)

Ground Truth 4.50 (£0.06)
Baseline 4.50 (4£0.06)
without Normalizing Flow  2.98 (£0.08)
with Mel-spectrogram 4.31 (£0.08)

4.2. Generalization to Multi-Speaker Text-to-Speech

To verify that our model can learn and express diverse
speech characteristics, we compared our model to Tacotron
2, Glow-TTS and HiFi-GAN, which showed the ability to
extend to multi-speaker speech synthesis (Jia et al., 2018;
Kim et al., 2020; Kong et al., 2020). We trained the mod-
els on the VCTK dataset. We added speaker embedding
to our model as described in Section 2.5. For Tacotron
2, we broadcasted speaker embedding and concatenated it
with the encoder output, and for Glow-TTS, we applied the
global conditioning following the previous work. The eval-
uation method is the same as that described in Section 4.1.
As shown in Table 3, our model achieves a higher MOS
than the other models. This demonstrates that our model
learns and expresses various speech characteristics in an
end-to-end manner.

Table 3. Comparison of evaluated MOS with 95% confidence in-
tervals on the VCTK dataset.

Model MOS (CI)

Ground Truth 4.38 (£0.07)
Tacotron 2 + HiFi-GAN 3.14 (£0.09)
Tacotron 2 + HiFi-GAN (Fine-tuned) 3.19 (40.09)
Glow-TTS + HiFi-GAN 3.76 (£0.07)
Glow-TTS + HiFi-GAN (Fine-tuned) 3.82 (£0.07)
VITS 4.38 (+£0.06)

4.3. Speech Variation

We verified how many different lengths of speech the
stochastic duration predictor produces, and how many dif-
ferent speech characteristics the synthesized samples have.
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Figure 2. Sample duration in seconds on (a) the LJ Speech dataset
and (b) the VCTK dataset.

Similar to Valle et al. (2021), all samples here were gen-
erated from a sentence “How much variation is there?”.
Figure 2a shows histograms of the lengths of 100 generated
utterances from each model. While Glow-TTS generates
only fixed-length utterances due to the deterministic du-
ration predictor, samples from our model follow a similar
length distribution to that of Tacotron 2. Figure 2b shows the
lengths of 100 utterances generated with each of five speaker
identities from our model in the multi-speaker setting, im-
plying that the model learns the speaker-dependent phoneme
duration. FO contours of 10 utterances extracted with the
YIN algorithm (De Cheveigné & Kawahara, 2002) in Fig-
ure 3 shows that our model generates speech with diverse
pitches and rhythms, and five samples generated with each
of different speaker identities in Figure 3d demonstrates
our model expresses very different lengths and pitches of
speech for each speaker identity. Note that Glow-TTS could
increase the diversity of pitch by increasing the standard
deviation of the prior distribution, but on the contrary, it
could lower the synthesis quality.

4.4. Synthesis Speed

We compared the synthesis speed of our model with a paral-
lel two-stage TTS system, Glow-TTS and HiFi-GAN. We
measured the synchronized elapsed time over the entire pro-
cess to generate raw waveforms from phoneme sequences
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Figure 3. Pitch tracks for the utterance “How much variation is
there?”. Samples are generated from (a) VITS, (b) Tacotron 2, and
(c) Glow-TTS in the single speaker setting and from (d) VITS in
the multi-speaker setting.

with 100 sentences randomly selected from the test set of the
LJ Speech dataset. We used a single NVIDIA V100 GPU
with a batch size of 1. The results are shown in Table 4.
Since our model does not require modules for generating
predefined intermediate representations, its sampling effi-
ciency and speed are greatly improved.

5. Related Work
5.1. End-to-End Text-to-Speech

Currently, neural TTS models with a two-stage pipeline can
synthesize human-like speech (Oord et al., 2016; Ping et al.,
2018; Shen et al., 2018). However, they typically require
vocoders trained or fine-tuned with first stage model output,
which causes training and deployment inefficiency. They
are also unable to reap the potential benefits of an end-to-
end approach that can use learned hidden representations
rather than predefined intermediate features.
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Table 4. Comparison of the synthesis speed. Speed of n kHz means
that the model can generate n x 1000 raw audio samples per second.
Real-time means the synthesis speed over real-time.

Model Speed (kHz) Real-time
Glow-TTS + HiFi-GAN 606.05 x27.48
VITS 1480.15 x67.12
VITS (DDP) 2005.03 %x90.93

Recently, single-stage end-to-end TTS models have been
proposed to tackle the more challenging task of generat-
ing raw waveforms, which contain richer information (e.g.,
high-frequency response and phase) than mel-spectrograms,
directly from text. FastSpeech 2s (Ren et al., 2021) is an
extension of FastSpeech 2 that enables end-to-end parallel
generation by adopting adversarial training and an auxil-
iary mel-spectrogram decoder that helps learn text repre-
sentations. However, to resolve the one-to-many problem,
FastSpeech 2s must extract phoneme duration, pitch, and
energy from speech used as input conditions in training.
EATS (Donahue et al., 2021) employs adversarial training
as well and a differentiable alignment scheme. To resolve
the length mismatch problem between generated and target
speech, EATS adopts soft dynamic time warping loss that is
calculated by dynamic programming. Wave Tacotron (Weiss
et al., 2020) combines normalizing flows with Tacotron 2
for an end-to-end structure but remains autoregressive. The
audio quality of all the aforementioned end-to-end TTS
models is less than that of two-stage models.

Unlike the aforementioned end-to-end models, by utiliz-
ing a conditional VAE, our model 1) learns to synthesize
raw waveforms directly from text without requiring addi-
tional input conditions, 2) uses a dynamic programming
method, MAS, to search the optimal alignment rather than
to calculate loss, 3) generates samples in parallel, and 4)
outperforms the best publicly available two-stage models.

5.2. Variational Autoencoders

VAE:s (Kingma & Welling, 2014) are one of the most widely
used likelihood-based deep generative models. We adopt a
conditional VAE to a TTS system. A conditional VAE is a
conditional generative model where the observed conditions
modulate the prior distribution of latent variables used to
generate outputs. In speech synthesis, Hsu et al. (2019) and
Zhang et al. (2019) combine Tacotron 2 and VAE:s to learn
speech style and prosody. BVAE-TTS (Lee et al., 2021) gen-
erates mel-spectrograms in parallel based on a bidirectional
VAE (Kingma et al., 2016). Unlike the previous works that
applied VAEs to first stage models, we adopt a VAE to a
parallel end-to-end TTS system.

Rezende & Mohamed (2015), Chen et al. (2017) and Ziegler
& Rush (2019) improve VAE performance by enhancing
the expressive power of prior and posterior distribution with
normalizing flows. To improve the representation power
of the prior distribution, we add normalizing flows to our
conditional prior network, leading to the generation of more
realistic samples.

Similar to our work, Ma et al. (2019) proposed a condi-
tional VAE with normalizing flows in a conditional prior
network for non-autoregressive neural machine translation,
FlowSeq. However, the fact that our model can explicitly
align a latent sequence with the source sequence differs from
FlowSeq, which needs to learn implicit alignment through
attention mechanisms. Our model removes the burden of
transforming the latent sequence into standard normal ran-
dom variables by matching the latent sequence with the
time-aligned source sequence via MAS, which allows for
simpler architecture of normalizing flows.

5.3. Duration Prediction in Non-Autoregressive
Text-to-Speech

Autoregressive TTS models (Taigman et al., 2018; Shen
et al., 2018; Valle et al., 2021) generate diverse speech with
different rhythms through their autoregressive structure and
several tricks including maintaining dropout probability dur-
ing inference and priming (Graves, 2013). Parallel TTS
models (Ren et al., 2019; Peng et al., 2020; Kim et al.,
2020; Ren et al., 2021; Lee et al., 2021), on the other hand,
have been relied on deterministic duration prediction. It is
because parallel models have to predict target phoneme dura-
tion or the total length of target speech in one feed-forward
path, which makes it hard to capture the correlated joint
distribution of speech rhythms. In this work, we suggest a
flow-based stochastic duration predictor that learns the joint
distribution of the estimated phoneme duration, resulting in
the generation of diverse speech rhythms in parallel.

6. Conclusion

In this work, we proposed a parallel TTS system, VITS, that
can learn and generate in an end-to-end manner. We further
introduced the stochastic duration predictor to express di-
verse rhythms of speech. The resulting system synthesizes
natural sounding speech waveforms directly from text, with-
out having to go through predefined intermediate speech
representations. Our experimental results show that our
method outperforms two-stage TTS systems and achieves
close to human quality. We hope the proposed method will
be used in many speech synthesis tasks, where two-stage
TTS systems have been used, to achieve performance im-
provement and enjoy the simplified training procedure. We
also want to point out that even though our method inte-
grates two separated generative pipelines in TTS systems,
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there remains a problem of text preprocessing. Investigating
self-supervised learning of language representations could
be a possible direction for removing the text preprocess-
ing step. We will release our source-code and pre-trained
models to facilitate research in plenty of future directions.
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Supplementary Material of
Conditional Variational Autoencoder with Adversarial Learning for
End-to-End Text-to-Speech

A. Monotonic Alignment Search

We present pseudocode for MAS in Figure 4. Although we search the alignment which maximizes the ELBO not the exact
log-likelihood of data, we can use the MAS implementation of Glow-TTS as described in Section 2.2.1.

def monotonic_alignment_search (value) :

"""Returns the most likely alignment for the given log-likelihood matrix.
Args:

value: the log-likelihood matrix. Its (i, j)-th entry contains

the log-likelihood of the j-th latent variable

for the given i-th prior mean and variance:

. math::
value {i,3j} = log N(f(z)_{j}; \mu_{i}, \sigma_{i})

(dtype=float, shape=[text_length, latent_variable length])
Returns:

path: the most likely alignment.

(dtype=float, shape=[text_length, latent_variable length])
t_x, t_y = value.shape # [text_length, letent_variable_ length]
path = zeros([t_x, t_yl)

A cache to store the log-likelihood for the most likely alignment so far.
= —INFINITY x ones([t_x, t_v])

[ORE™S

for y in range (t_y):

for x in range(max (0, t_x + y - t_y) ) :

min(t_x, y + 1

4 )
if y == 0: # Base case. If y is 0, the possible x value is only 0.
Q[x, 0] = value[x, 0]
else:
if x == 0:
v_prev = —INFINITY
else:
v_prev = Q[x-1, y-1]
v_cur = Q[x, y—-1]
Q[x, y] = valuel[x, y] + max(v_prev, v_cur)

# Backtrack from last observation.
index = t_x - 1
for y in range(t_y - 1, -1, -1):
pathl[index, y] = 1
if index != 0 and (index == y or Q[index, y-1] < Q[index-1, y-1]):
index = index - 1

return path

Figure 4. Pseudocode for Monotonic Alignment Search.

B. Model Configurations

In this section, we mainly describe the newly added parts of VITS as we followed configurations of Glow-TTS and
HiFi-GAN for several parts of our model: we use the same transformer encoder and WaveNet residual blocks as those of
Glow-TTS; our decoder and the multi-period discriminator is the same as the generator and multi-period discriminator of
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HiFi-GAN, respectively, except that we use different input dimension for the decoder and append a sub-discriminator.

B.1. Prior Encoder and Posterior Encoder

The normalizing flow in the prior encoder is a stack of four affine coupling layers, each coupling layer consisting of four
WaveNet residual blocks. As we restrict the affine coupling layers to be volume-preserving transformations, the coupling
layers do not produce scale parameters.

The posterior encoder, consisting of 16 WaveNet residual blocks, takes linear-scale log magnitude spectrograms and produce
latent variables with 192 channels.

B.2. Decoder and Discriminator

The input of our decoder is latent variables generated from the prior or posterior encoders, so the input channel size of the
decoder is 192. For the last convolutional layer of the decoder, we remove a bias parameter, as it causes unstable gradient
scales during mixed precision training.

For the discriminator, HiFi-GAN uses the multi-period discriminator containing five sub-discriminators with periods
[2,3,5,7,11] and the multi-scale discriminator containing three sub-discriminators. To improve training efficiency, we
leave only the first sub-discriminator of the multi-scale discriminator that operates on raw waveforms and discard two
sub-discriminators operating on average-pooled waveforms. The resultant discriminator can be seen as the multi-period
discriminator with periods [1, 2,3, 5,7, 11].
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Figure 5. Block diagram depicting (a) training procedure and (b) inference procedure of the stochastic duration predictor. The main
building block of the stochastic duration predictor is (c) the dilated and depth-wise separable convolutional residual block.

B.3. Stochastic Duration Predictor

Figures 5a and 5b show the training and inference procedures of the stochastic duration predictor, respectively. The main
building block of the stochastic duration predictor is the dilated and depth-wise separable convolutional (DDSConv) residual
block as in Figure 5c. Each convolutional layer in DDSConv blocks is followed by a layer normalization layer and GELU
activation function. We choose to use dilated and depth-wise separable convolutional layers for improving parameter
efficiency while maintaining large receptive field size.

The posterior encoder and normalizing flow module in the duration predictor are flow-based neural networks and have the
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similar architecture. The difference is that the posterior encoder transforms a Gaussian noise sequence into two random
variables v and u to express the approximate posterior distribution g4 (u, v|d, ¢tert), and the normalizing flow module
transforms d — u and v into a Gaussian noise sequence to express the log-likelihood of the augmented and dequantized data
log pg(d — u, v|ctert) as described in Section 2.2.2.

All input conditions are processed through condition encoders, each consisting of two 1x1 convolutional layers and a
DDSConv residual block. The posterior encoder and normalizing flow module have four coupling layers of neural spline
flows. Each coupling layer first processes input and input conditions through a DDSConv block and produces 29-channel
parameters that are used to construct 10 rational-quadratic functions. We set the hidden dimension of all coupling layers and
condition encoders to 192. Figure 6a and 6b show the architecture of a condition encoder and a coupling layer used in the
stochastic duration predictor.
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(a) Condition encoder in the stochastic duration predictor (b) Coupling layer in the stochastic duration predictor

Figure 6. The architecture of (a) condition encoder and (b) coupling layer used in the stochastic duration predictor.

C. Side-by-Side Evaluation

We conducted 7-point Comparative Mean Opinion Score (CMOS) evaluation between VITS and the ground truth through
500 ratings on 50 items. Our model achieved -0.106 and -0.270 CMOS on the LJ Speech and the VCTK datasets, respectively,
as in Table 5. It indicates that even though our model outperforms the best publicly available TTS system, Glow-TTS and
HiFi-GAN, and achieves a comparable score to ground truth in MOS evaluation, there remains a small preference of raters
towards the ground truth over our model.

Table 5. Evaluated CMOS of VITS compared to the ground truth.
Dataset CMOS

LJ Speech  -0.106
VCTK -0.262

D. Voice Conversion

In the multi-speaker setting, we do not provide speaker identities into the text encoder, which makes the latent variables
estimated from the text encoder learn speaker-independent representations. Using the speaker-independent representations,
we can transform an audio recording of one speaker into a voice of another speaker. For a given speaker identity s and an
utterance of the speaker, we can attain a linear spectrogram x;;,, from the corresponding utterance audio. We can transform
Z1in, into a speaker-independent representation e through the posterior encoder and the normalizing flow in the prior encoder:

z ~ q¢(2|Z1in, 5) (12)
e = fo(z|s) (13)
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Then, we can synthesize a voice § of a target speaker identity $ from the representation e through the inverse transformation
of the normalizing flow f, ! and decoder G-

g=G(fy " (el3)]3) (14)

Learning speaker-independent representations and using it for voice conversion can be seen as an extension of the voice
conversion method proposed in Glow-TTS. Our voice conversion method provides raw waveforms rather than mel-
spectrograms as in Glow-TTS. The voice conversion results are presented in Figure 7. It shows a similar trend of pitch
tracks with different pitch levels.
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Figure 7. Pitch tracks of a ground truth sample and the corresponding voice conversion samples with different speaker identities.



